Perl for System
Administration

Jacinta Richardson
Paul Fenwick

Perl for System Administration
by Jacinta Richardson and Paul Fenwick

Copyright © 2006-2008 Jacinta Richardson (jarich@péning.com.au)
Copyright © 2006-2008 Paul Fenwick (pjf@perltraining.cam)
Copyright © 2006-2008 Perl Training Australia (http://{bexining.com.au)

Conventions used throughout this text are based upon thectons used in the Netizen training manuals by Kirrily Bdpand found at
http://sourceforge.net/projects/spork

Distribution of this work is prohibited unless prior perrsisn is obtained from the copyright holder.

This training manual is maintained by Perl Training Aus&aand can be found at http://www.perltraining.com.atgsdtml.

This is revision 1.2 of Perl Training Australia’s "Perl foySem Administrators” training manual.

Table of Contents

1. About Perl Training AUSLIALIAeeeiiiiiiiie et e e e 1.
1= V11T PSSR 1.
L] 1S U1 1 1] o SRS 1
100] o] r= Tox QT L= SO PPRP PP PPPPP 1

P2 1 1o T [Tox 1T o U 3
(L0 U1 £Y= T 0T 11 0= 3
ASSUMEA KNOWIBUQE. ...ttt ettt e e e e e e ettt e e e e e e e s emmnanea e as 3
MOAUIE ODJECHIVES......eiiiiiee ittt e e e e e e bbb e e e e eenaeeeeeeas 3
Platform and version detalls................ooooiiiiiiiiiiiiiieeeeeeee et 3.
THE COUIMSE NOLES......ccoo i eeeen e
OthEr MALEIIAIS.......iiiieeeieieieie et e emee e eeeeeeteeeaesesesssesssbsbasetassessssnmnnnesesesssnssnnns 4

3. Why use Perl for System AdminiStration?............cooooiiiiiiiiiiiiiee e 5.

A, PEITBASICS.......ciiiiiiiiiiiieeieee ettt e eeeee e e e eeeeteeeaeeeatesstesstesabebetebats b nnnnneeseeesseestenerennrnrnrns 1.
T TR ol 4 F= T o (= SO PP SRP TR 7
IMPOITANT DASICS ..ot e et eea e e 7

[1= o U UT TR SSPR 7
S =Y o7 T Vo T T 1= USSR 7
SHrCtUrES and WaAININGSvviiiiiiieeeeee s st e e e e e e e es s reeree e e e e s st eee e e e s e e snnnrrneeaeeeeas 7.
S 1T P PSP RRRPUPRPY 8
LAYz U 11 o TS 8
(070] 1110 4=T 0] £ U TP PP PR PPPPPPPP 8
Starting YOUE PrOQIAITL.uuuvreireeeeeeissettraereeeeaessssnnneeeesesssssssneareeaeeeessaasssnnenereeeeaan 9.
VATADIES. ...ttt nnres 9.
SCAIAIS ..ttt et ae bt e e e 9
Quotes and INtErpolatioN............cviveiii i 10
N > £ 10
ATTAY [OOKUPS. ...eeieee ettt e e e e e e e e e e s e s ennn e eeeeeenan 11
Changing array €l€MENLS...........uviiiiii i cerre e e e e 11
Adding array €l8MENES..........occiiiiiiiee e 11
Counting BACKWAIS..........co i eerrrrr e r e e e e r e e e e e e e e nnes 11
LaSt INAEX. ..o 11
ANTAY IENGEN. ...t e e 11
INEEIPOIALION. ...ttt enees 12
HaSNES ... 12
HASH I0OKUPS. ...ttt e e 12
Changing hash ValUES.............uuiiiiiiiiie e 12
AddiNg hash PAIIS.......eeeiiiiiee e e 13
HASN SIZE.....ooiiecee ettt 13
INEEIPOIALION. ...t enees 13
SPECial VariabIES ..o 13
et e e e et e e ——ee e et b te e enaneaanrraeeeannres 13
@ARGY ... e naaenree s 13
L] = A PP SRPRPRR 13
Conditionals and truth...............o e 14
(00] 4] 0 F= 1T g I 0] o 1= -1 (0] « =\ PR 14
2 10T0] [oT-Ta T o o= = | (o] €S 15
(10T] 0] USSR 15
UNTESS. ettt ettt e e et e e e et e e e snb e e e nane e et e e e 15

Perl Training Australia (http://perltraining.com.au/) iii

(o o] o)1 gTo NeTo] g IS] (B (o1 X3 SO PR 16
WHHTE <ttt e e oottt e e e e e e e st e e e e et e be e e e e e e e e 16
FOPBACK ... et 16

SUDIOULINES......ee ettt e e e sttt e e e e e e e e ne e e e e e e e e annbbeeeeeaaas 17

1 L 1L PRSPPI 18
T2 T [o TR TSRO 19

Changing the input record SeparatQr.............ccueveeiiieineiiiiiiiec e 19
LAY 11 o To T TR 20

L0 o SRR PRRP 20

=W oo |- TP 21

(O g T o (T a1 0] 4 F= Y USSP 22

5. REQUIAT EXPIESSIONSeteeiiiie ettt ettt e e e ettt e e e e e e e s aan bbbt e eeaeaeesaannbeeeeaaaansseees 23

T TRl =T) (= S 23

What are regular EXPreSSIONS?.......uuuuiiieeeeiiiiiieertreee e s e s mereee s s esrerarereeeeessssrnreeereeeees 23

Regular expression operators and fUNCLONS...........oeeeiiiiiiiiiiiiiee e 23
M/PATTERNY/ - the matCh OPEratar..........cccooviiiiiiieieeeee e e eeeee e e e e 23
s/IPATTERN/REPLACEMENT/ - the substitution operatar..........ccccccoovvcvvvvvnnnnnnn. 24

EXBICISES. .ttt et 24
2T aTo T o o] o =] - 0] =N 25
1SV 1T 111 =SSP 25

=] o= Wl g T = T £ PP PR 25
Some easy Meta CharaCterS.........c.uvvviiiiie e e 25
(@ U E= T a7 1T £ 27
T (o] [~ PSPPSRI 27

LT L0101 o1 T IR (=Tod o 0] Lo [[OOSR 28
CharaCter ClASSES. ..cci i e ittt ettt e et e e e e e e ee e eaeenes 28

EXBICISES. .ttt ettt et e e e e e e e e e ennneeaas 29

F 1= 0 F= 4o o PP SURPUPRTPPRP 29

The coNCePt Of ALOMIS.......eeiiiiii ittt 30

o T (o111 U OOPPUPPPPPPR 30

(O g T o (T a1 0] 4 F= Y USSP 31

6. Advanced reguIar EXPrESSIONS i ittt iee e e e e et ee e e s beb e e eaaaea s s e annneenreaeaaaaaas 33

T TR ol s F= T o) (= SO PSR UUTTP ORI 33

ASSUMEA KNOWIBAQE. ...ttt et e e et e e e e e e e meeeee s 33

Capturing matched Strings t0 SCAIALS........cooiiiiiiiiiii e 33

Extended regular EXPreSSIONS.o i ittt ie e e e et ee e e e e e e s eeeaaaeaaan 34
=] (oL TP PUR R PPPUTTTN 35
ADVANCEA EXEITISEieiiie ettt ettt e ettt e et e et ee e e sneeas 35

1T To] o= PR 35
EXBICISE ..ttt e e e naaes 36

MOre Meta ChArACLErS.........uviiiiiiiie e ernee e 36

Working with MUlti-liNe StrNGS.........vuiiieiieie e 37
EXBICISE ..ttt e e et 39
Regexp modifiers for multi-line data...............ooociviiiiee e 39

BaACK FBIEIBNCES. ... et e e e e 40
SPECIAl VANIADIES.......eeiiiiiie e 40
T (ol [T SOOI J |
ADVANCEA EXEITISES ...oeiiitiiiei ittt ettt et e ettt e e st e e e st ee e s sbbeeeeesnbeeeeanns 42

L1 g T o1 1 a1 [g 1 4= Y/ 42

Perl Training Australia (http://perltraining.com.au/)

7. System interaction, wrappers, and process manipulation...............cccccoviiiiiiiiiiii e 43

Tl TR ol s F= T o) (= SO SO RUT U RUUTRP P RROPOOY A3
Platform iNAEPENAENCE..........ueiiiiiie ettt e e e e eennne s 43
EXIEVAIUESttt e ettt e e e e e e e e rmneeee e e s e nannbeaneeaeas 43
Invoking shell commands USING SYSIEM.......ciiiiii it e e 43
Multiple argumMeNnt SYSTEML........coii it e e ee e e e 44
Problems wWith SYStemM ... A
IPC::System::Simple and autodie............coouiiiiiiiiieiiee e 45
Capturing @ Program’s OULPUL..........oeiiiiuuiiieit e ee ettt eeeeseeebbe e e e ee e e e s e snneeeeeeeaaeeeaaaaneed A7.
DACKECKS/OX. « ettt et e e e a7

(T T=T0 Io] 0= o R PP T UUURPPPR a7
[0 Vo o] o= o WP PR OPOUUPPPY. £

L2 (T o PR 48
EXample - Tape DACKUPS.couuiiiiiiiie et 49
SENAING SIGNAIS ... cee et e ettt e e ettt e e e s sbb e e e e st be e e e smnreeessbeeeee e 50
ChaPLEN SUMIMAIY. ... ittt ettt e e ettt e e e et be e e e snbbe e e e s snneesntbeeeeens 51
8. The COMMANA IINE.....ooiiiiiiiii e ettt e e et eeenneee s sraeee e 53
T TRl F= T (= P 53
(@ ToT SN 0} =T] 0] £ RPN 53
Using the execute switch (-e) to convert from epoch-time...........cccco v, 53
Yol] 0l T3 o 0o |- Va 010 11 Vo OSSP 54
Printing SWItCH (=) .ceeee oot e e e et ae e e e snns 54
NON-PrNtING SWItCH (-N)...eeiiee e e e e er e e e e e e ennnes 515
YT o [LT (o o I Y R RESR 55
IN-PIACE SWILCH (F1)1riee i et e e e e e et eeee e e e e snns 55
AULOSPIIt SWILCH (F8) -+ttt et ettt e e e e e e e eeeeeeas 56
Other SWILCRES. ...ttt e e e e e e e e smne e e e e e e e nnnnes 57
ChECK SWILCN (FC) tteeteieeeie ittt ettt e e e e e e eee e 57
Warnings SWItCH (VM)ueeeeieieeee ettt e e e e et e e e e e e e e e e e e 51
Debugging SWILCH (=) .. .cevieiieiii e 51
INCIUAE SWILCH (=)t ee e 57
LU 1811 (o] o I N 1) PP PO 58

(O gF= o (T a1 0] 4 F= USSP 58
9. Filesystem analysis and traversal..............ooo e 59
Ta I TR el s F= T o) (= SO UUUUUR R URUURTPPRPRO 59
DIrECIONY SEPAIALOLS.....eeiiiii ettt e e e ettt e e e ettt e et e e e e e s s bbb e eeaeaeeesaannnneeeeaaannnes 59
WOPKING WIth filES.....ceieiii e e 59
Copying, moving and renaming filS...........covieeiiiiiiiiiiii e 59
DElEtING fIlES. .. et e e 60
Finding information about fileS............cooiiiiiiiiiiii e 60
Openthe file ONIY if. ... 61

B =T 00] o T0] = U gV 1= PRERRRY 61

1 L= 0T 2T T S 62
LOCKING YOUI PrOCESS.....cceiiiiiieiieeieeeeeseesisieeeee e e e essnneee e e e e e s snnnareneeeaeeeennannns 63

FIlE PeIMISSIONS. ... eieiiiiieiie ettt e st e e st e e e nbe e eebee e e e neead 63
Changing PEIMISSIONS.......uuviiiiiie e e e e sse e e e e er e e e e e e s nnnrnnrreeeeeneeens 64.
Default permissions (UMask)...........ueiieeeeoiiiiiiieiiieee s ceeeeee s esrenr e ee e e eeaneend 64
Changing OWNEISHID......uuiiiiiee e e e e e e e e rr e e e e e e en e 64
LIS ottt e et e e nr e e e e 65
WOIKIiNG With dir€CIOMESuuuiiiiieiie et es e e e e et eeee e e e e e e nnnnes 65
LY== o [T To o LT =Tox (o] [SR RSRSR 65

Perl Training Australia (http://perltraining.com.au/) %

Vi

Returning Normal files............oooiiiii e 66

Creating and removing Air€CLOMESuueiiiiiieeiiitii et 66
DIFrECIOrY PANS. ..ccie i eeeeneee] 66
Directory repreSentations..........cvueueeeieee e 67
Preventing path traversal attacks............cccuviiiiiiiiiiieeee e 67

ChangiNg Ir€CLOMESuueeieeee ettt e e e e ee e e e e e e e 68
Current working directory, absolute path for files..........ccccooiie 68
FHlEIIFING. ... e et 68
FIlelFINAIRUIE. ... 69

(O g T o (T o101 0] 4 F= USSP 69
10. Mail processing and filteriNg...........ocoiiiiiiiiiiii e 71
T TR ol s F= T o) (= SO U U TP RUUTRP RPN 71
1= oo [T oo 4= 1 TP 71
WIith attaChmENtS........oeii e 71
FIEEIING ML ettt e e e e nnre e e e 12
Y= T A B o 1 S 72
Accepting and filtering mail............cccooeiiie i 3

ChaPLEN SUMIMAIY. ... ittt et e e ettt e e e et b be e e e snbbe e e e s sneeeentbeeeeens 75
Y=o) A o] 1S T =T = L4 LU 77
TR a3 g F= T L= PSPPSR 7
Potential security PitfallS............ooooiiiiii e 77
(0o o [T o N (o] gRT=Tol U] 111V PRSP 78
=1L o] =T o0 o PP 18
TUIMNING ON TAINT. ..ot e et e e e beeeennees 79
UNtaINtING YOUE QALA......ceiiii ittt e et e e e e e e e e e snnneeeeeas 79
Dangerous environment variables...............oiiii e 80
PERLSLIB, PERLLIB, PERLSOPT......cciitiiiiiieiiieeriiee e 80
Set-USer-id Perl PrOgramiS. et etiee ettt eee e e e enae 80
(O gF= o1 (T o101 0] 4 F= /USSP 81
12. Logfile processing and MONItOMNG.coiiurrreeiiiiiiiee ittt mee e et 83
T TR ol s F= T o (= SO U TU TR URUUTRPPTOPRO 83
TAING FIlES. et ettt e e e e mr e e e e e ea s 83
OPLIONAL BIGUMENTS......eiiiiie etttk e e e et e e e e e s et e e e e e e e e nneeeas 83
1T =T Y o o TP U PRSPPI 84
EXBICISES ...ttt 85
INEErESING AALA. ... e e e e e e 85
Parsing Apache LOGIIlES.........uuiii i 86
Generating reports from logfiles with Logfile..........ccevveveeiiiiiii e 87
LOGOING WIth PeIL ...t 88
Really SIMPIE [OGQING.....coiiiiiiiiiiiiie e 88.
(o0 V2 o 1= PSR UUPTPPPPURPIN 389
[oTo o [T To N (o TS}V (o H PP PRP SR 89
ChaPLEr SUMIMAIY. ... itteii ettt e e e ettt e e e et be e e e snbbe e e e s sneeeentbeeeeens 90
13. Interacting With NEIWOIK SEIVICES.......uuiiiiie i e e e e eae e e e 91
TR a3 g F= T o L= PSP TPPR 91
Sending data to IRC......coi it 91
EVENT AMVEN SEIVICES .. .eiiiiiiiiiie ettt ettt e e s 91
Sending an AOL iNSEANt MESSAGE.uuviiiiiiiieie ittt ettt e et ee s neaeees 92
CAUl-DACKS. ...t 93
Sending data to a SPEECH ENGINE..........uuiiiiiiiieiieee e 93

Perl Training Australia (http://perltraining.com.au/)

Web browsing and SCrapiNg..........uueeeiiiir it reeeee e e e e e e eeebeeeeaaeeeas 93.

WOPKING WIth LDAP ...ttt ettt e e et e e e e e e e e meeeee s 95

(0] 0] 0 [=Tex 1] o T U PP URUUURPPTRN 95

SEAICHING. ... e ettt e e e rnnnne e e e e 95

Yo (o 10T TR 95

Y[o 11471 o To TP PPURUUUPRPPP 96

(O gF= o1 (T o101 0] 4 F= /USSP 96

LA, FUMNEI RESOUICESeiiieeeii ittt ie ettt e ettt e e e e e e e e s e bbbttt e e ee e e e e e s annbbsaeeeeaaaaseseeeeans 99
ONIINE RESOUICES. ..ottt et e e e e e e ettt e et e e e e e e e e e bbb b et e e e e aaanneeeeeans 99
BOOKS. ..ttt e et e e e e e aeaaaa s 99
100 = PP PUTPPPPRRRPN 101

Perl Training Australia (http://perltraining.com.au/) Vi

viii Perl Training Australia (http://perltraining.com.au/)

List of Tables

1-1.
5-1.
5-2.
5-3.
5-4.
6-1.
6-2.

Perl Training Australia’s contact detailS.............oevvviiiiiiiiiii e 1.
(21T Lo T o 0] o L=] = L (o =3RS 25
=0 =3 d oI 410 Lo 1= oSSR 25
Regular expression meta CharacCters...........cccvvvuviiie e 26
Regular expression QUANTIfIEES..........uuuiiiiirie i reeeee e e s e e e neeeeees 27.
MOIE MELA CHATACLELS.coiiiiiiii ettt eeneee s 36
Effects of single and multi-lin€ OPLioNS..........ccooiiiiiiiiie e 40

Perl Training Australia (http://perltraining.com.au/) iX

Perl Training Australia (http://perltraining.com.au/)

Chapter 1. About Perl Training Australia

Training

Perl Training Australia (http://www.perltraining.comeoffers quality training in all aspects of the
Perl programming language. We operate throughout Auataaldl the Asia-Pacific region. Our
trainers are active Perl developers who take a personaésite Perl’s growth and improvement.
Our trainers can regularly be found frequenting online camities such as Perl Monks
(http://www.perlmonks.org/) and answering questions amyiding feedback for Perl users of all
experience levels.

Our primary trainer, Paul Fenwick, is a leading Perl expeAustralia and believes in making Perl a
fun language to learn and use. Paul Fenwick has been workthd?erl for over 10 years, and is an
active developer who has written articles fdre Perl Journahnd other publications.

Consulting

In addition to our training courses, Perl Training Austiaiso offers a variety of consulting
services. We cover all stages of the software developnfertyicle, from requirements analysis to
testing and maintenance.

Our expert consultants are both flexible and reliable, aachaailable to help meet your needs,
however large or small. Our expertise ranges beyond thaisvHerl, and includes Unix system
administration, security auditing, database design, &cdurse software development.

Contact us

If you have any project development needs or wish to learrséoRerl to take advantage of its quick
development time, fast performance and amazing vergatilitn’'t hesitate to contact us.

Table 1-1. Perl Training Australia’s contact details

Phone: +61 3 9354 6001

Fax: +61 3 9354 2681

Email: contact@perltraining.com.au

Webpage: http://perltraining.com.au/

Address: 104 Elizabeth Street, Coburg VIC, 3058
AUSTRALIA

Perl Training Australia (http://perltraining.com.au/) 1

Chapter 1. About Perl Training Australia

2 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. Introduction

Welcome to Perl Training AustraliaRer| for System Administratiof his is a one-day module in
which we will cover system administration users for Perl.

Course outline

« Brief introduction to Perl.

- Filesystem analysis and traversal.

- Mail processing and filtering.

- Privilege and security considerations.

- Logfile processing and monitoring.

« System interaction, wrappers, and process manipulation.

- Interacting with network services.

Assumed knowledge

This training module assumes the following prior knowledgd skills:

- Previous programming experience.

- Thorough understanding of operators and functions, cmmdit constructs, subroutines and basic
regular expressions concepts.

Module objectives

- Some objectives

Platform and version details

Perl is a cross-platform computer language which runs sstakly on approximately 30 different
operating systems. However, as each operating systenfasatlif this does occasionally impact on
the code you write. Most of what you will learn will work eqlyalvell on all operating systems;
your instructor will inform you throughout the course of amgas which differ.

All Perl Training Australia’s Perl training courses uselPgithe most recent major release of the
Perl language. Perl 5 differs significantly from previoussiens of Perl, so you will need a Perl 5
interpreter to use what you have learnt. However, older gredrams should work fine under Perl 5.

At the time of writing, the most recent stable release of Rerkrsion 5.8.8, however older versions
of Perl 5 are still common. Your instructor will inform you afy features which may not exist in
older versions.

Perl Training Australia (http://perltraining.com.au/) 3

Chapter 2. Introduction

The course notes
These course notes contain material which will guide yoaugh the topics listed above, as well as
appendices containing other useful information.
The following typographical conventions are used in thesges
System commands appeaitiis typeface
Literal text which you should type in to the command line oit@dappears asionospaced font

Keystrokes which you should type appear like tlEBTER. Combinations of keys appear like this:
CTRL-D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

Parts of commands or other literal text which should be @y your own specific values appear
like this

Notes and tips appear offset from the text like this.

@Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

Notes marked with "Readme" are pointers to more information which can be found in your

textbook or in online documentation such as manual pages or websites.

C Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

Other materials

In addition to these notes, it is highly recommend that yotaioba copy of Programming Perl (2nd
or 3rd edition) by Larry Wall, et al., more commonly refertechs "the Camel book". While these
notes have been developed to be useful in their own righCtmel book covers an extensive range
of topics not covered in this course, and discusses the ptscevered in these notes in much more
detail. The Camel Book is considered to be the definitiveregfee book for the Perl programming
language.

The page references in these notes refer t@teditionof the camel book. References to the 2nd
edition will be shown in parentheses.

4 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Why use Perl for System
Administration?

For years, Perl has been the scripting language of choigadol system administrators. There are
many factors which have influenced this choice. Some of these

- Excellent text manipulation capabilities. Perl excels anipulating log files and other regular
data. This makes it easy to automate much of the general lkeeping associated with system
maintenance. It also makes it easy to extract data and tfesddifferent kinds of application
log files.

« CPAN. The Comprehensive Perl Archive Network, gives Pernladt infinite extensibility, full
database connectivity and Unicode support. There arallyghousands of third party modules to
solve all sorts of different problems. If you have a task tiéilfthen chances are reasonable that
someone else has already done some of it for you.

- DBI. Perl's Database interface supports a wide range o thérty databases. Further it presents a
consistent interface for each. Using this module simplifiesmanagement of disparate database
platforms.

- Portability. Perl exists on more than 30 different opei@sgstems. This allows well written code
to be developed on one platform and deployed across manglifsiing automation tasks.

« Speed. Perl is fast to write and fast to run, making it perfiecsmall once-off tasks. Yet Perl is
also great for large projects with support for full test cage, documentation and modules.

- Documentation. Perl has extensive documentation freelifale. This is one of Perl’s biggest
assets. Every built in function comes with a full descriptamd many with usage examples. Perl’s
modules also come with extensive documentation as wellkastiées and example code.

- Familiarity. Much of what can be done in bash, sed, awk andrCbearansferred almost directly
into Perl code. Likewise the format of many functions areiegjant to common Unix commands.

- Low-level access. As well as allowing access to high-leuatfionality, Perl makes it easy to
work directly with hardware, sockets and to fulfil other ldswel requirements.

- Freedom. Perl is licenced under both the Artistic licengethr GNU Public License and is freely
available.

Perl Training Australia (http://perltraining.com.au/) 5

Chapter 3. Why use Perl for System Administration?

6 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

In this chapter...
This chapter aims to provide a quick tour of Perl's basicsi ¥an skip much of this material if you
already know Perl.

The concepts in this chapter are used extensively througheuest of these notes, and this
information is intended for quick reference rather tha@pth analysis.

For a greater discussion on these concepts, refer to PénifigaAustralia’sProgramming Perl
course notes (available online at http://perltrainingicau/notes.html), dProgramming Perl, 3rd Ed
by Larry Wall et al (commonly referred to as tiamel Book

Important basics

Help

Perl comes with a very detailed help system cafi@dioc . This is installed on most systems, and
works similarly to the Unixnan. Useful pages are listed below.

perldoc perldoc # Instructions on using perldoc
perldoc perltoc # Perl table of contents

perldoc perl # Overview of Perl

perldoc perlfunc # Full list of Perl functions

perldoc -f <function_name> # Help with a specific function

perldoc perlop # Full list of Perl operators

perldoc perimodlib # List of modules installed with Perl
perldoc perllocal # List of locally installed modules
perldoc <module_name> # Documentation for specific module
Shebang line

All Perl programs should start with a shebang line. On Uniat Enix-like operating systems, this
line should specify where to find Perl. For example:

#!/usr/bin/perl

On Microsoft Win32, and other systems which rely on otheadatdetermine where to find the
interpretor this can be shortened to:

#lperl

It is a good practice, regardless of your operating systerimdude the full Unix path, as this makes
your programs more portable between systems.

Perl Training Australia (http://perltraining.com.au/) 7

Chapter 4. Perl Basics

Strictures and warnings

Perl comes with two great programming aids; strictures aachings. We strongly recommend you
turn these on and leave them on for every program you write.

#!/usr/bin/perl -w
use strict;

Or alternately (versions of Perl 5.6.0 and above):

#!/usr/bin/perl
use strict;
use warnings;

Strict

Strict ensures that you pre-declare your variables, d@@taymbolic references and don't have
barewords. Pre-declaring your variables is just a mattpreteding the variable name with a
scoping keyword (such asy) the first time you use it. It saves you from making accidespalling
mistakes:

without strict;
$num_of_freinds = 5; # Oops, poor spelling!

print "I have $num_of_friends friends\n";

With strict, compilation of your program would die with arrer:

Global symbol "$num_of_friends" requires explicit packag e name

telling you that Perl has never seen #hem_of_friends variable before.

Symbolic references are only really needed for very advéoperations in Perl; for everything else
the same job can be done faster and more cleanly udiagla As such, we will not mention
symbolic references further in this course, except to satytbu don’t want to use them by mistake.

Barewords are words in your programs with no identifyingreleteristics. For each case of a
bareword, Perl has tguessat run-time whether it's a string, or a call to a subroutimel this can
introduce bugs if Perl guesses differently to what you idezh Since it's trivial to be clear on this
distinction, you will never need to use barewords either.

Warnings

Warnings turns on helpful advice to let you know that Pemitsiyou’ve probably done something
wrong. These warnings aren’t necessarily show-stoppetdf you're getting them, it's worth
spending some time wondering why. A few things that triggarnings are:

- Trying to read from or write to an unopened filehandle, socketevice.
- Treating a string of non-numeric characters as if it wereralper.

« Printing or performing comparisons with undefined values.

Assigning an odd number of elements to a hash (collectiorpfalue pairs).

8 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

Comments

Comments are wonderful things which help future maintaniecluding yourself in 6 months time,
decipher your code. These should be liberally spread thrgogr code.

To start a comment just add¢taYour comment will then last until the end of line:
This comment takes the whole line

print "Hello World!"; # This comment starts part way through

It's a good idea to include a comment at the top of your codengayhat it does, and who wrote it.
This allows the future maintainer of your code contact yaul &ll you how grateful they are that
you provided such good comments. It's also recommendednaude the date (at least a month and
year) when you wrote the code.

Starting your program
Each of your programs should start with:

#!/usr/bin/perl -w

This program....

Author: Your Name <you@some.address.somewhere>
Date: Month Year

use strict;

Variables

There are two rules on user-defined variable names. They are:

- Variable names may only consist of alphabet, numerical badihderscore j characters.
- Variable names must start with an alphabet character.

There are variables whose names do not conform to these halewsver they arSpecialvariables.
We'll cover them later.

Perl has three basic variable types, and each is precedepunctuation character known asigil.
The variables and sigils are scalas}, @rrays @, and hashesq.

Scalars

Perl's fundamental type is the scalar. A scalar contaisiaglepiece of information; such as a
number, a character, a string, a filehandle, or a referermiet§p). The sigil for a scalar variable is
the dollar §). A mnemonic for this is the looks a bit like ars for single or scalar.

my $name = "Perl Training Australia”;
my $number = 123;

my $float = 234.54;

my $char = "a";

Unlike strictly typed programming languages (such as C ane)J Perl does not care what kind of
value you're putting in a scalar. If you treat a scalar conitaj a number as a string, Perl will turn it
into a string. If you treat a scalar containing a string asmalmer, Perl will try to turn it into a

Perl Training Australia (http://perltraining.com.au/) 9

Chapter 4. Perl Basics

10

number. Adding integers and floating point numbers resulésfloating point result. If you want to
coerce it back into an integer, that's possible too. If yosigisa string to a variable which was
previously a filehandle, Perl doesn’t mind.

my $new_num = $number + S$float; # 357.54
my $silly = $number + $name; # 123 (and a warning)

print $silly . $char; # prints "123a"

Further, Perl sets no limit on the length of your strings har $ize of your numbers. However, limits
may still exist due to environmental influences such as nm&cpiecision and memory availability.
There is no need to tell Perl how long your string will be.

Quotes and interpolation

Perl has two sets of quote that are used for delimiting sétibguble quotes' § and single quotes
(). In many cases in your program these can be used intercablyge

my $name
my $home

'Perl Training Australia’;
"Melbourne";

However there is one difference. Double quotespolate while single quotes do not.
Interpolation allows us to add variables within a set of dewjuotes and have those variables be
replaced with their contents. For example:

print "I work at $name"; # prints "I work at Perl Training Aust ralia”

print 'l work at $name’; # prints "I work at $name"

Control characters such &s for newline\t for tab andb for bell can also be interpolated within
double quotes. These are merely treated as pairs of chewagthin single quotes.

To escapecharacters within quotes, to remove any special interpelateanings, use the backslash
(\) character. To escape a backslash use two:

print "He said \"Hi Sally";
print 'It is Tim\'s sandwich’;

Perl also allows the programmer to pick their own quotes,$iggitheq (single-quotes) angy
(double-quotes) operators. The following are equivaletié two lines above:

print gg{He said "Hi Sally"};
print g{lt is Tim's sandwich};

Arrays

An array is an ordered list of scalars. Arrays can containramygber of scalars (again within
memory and other machine constraints), and there are rrictigsts on what those scalars may
contain. The sigil for an array is an at-sigé).(A mnemonic for this is tha@looks likea for array or
all.

my @numbers = (1, 2, 3, 4, 5);

my @friends = ("Jane", "Bob", "Alice", "Eve");

my @mixed = (1, "Jane", 4, "Jacob", 7, 12.12);
my @info = ($name, $home);

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

Array indexes start at 0. S@numbers has the indexes 0 through to 4.

Array lookups
To look up a single element in an array we do the following:

print $friends[3]; # prints "Eve"

notice that we use @sign here rather than amsign. This is because we're gettingiaglething
from the array: acalar.

Changing array elements
To change an element in the array we use the same syntax:

$numbers[3] = 20; # @numbers is now (1, 2, 3, 20, 5)

Adding array elements

Adding an element to the array is the same as changing an eleexeept in this case, the previous
value was empty.

$mixed[5] = "Ben"; # (1, "Jane", 4, "Jacob", 7, 12.12, "Ben")

A betterway of doing this is tgush the value on to the end of the array, as this saves us having to
know what index value we are up to.

push @mixed, "Joe"; # (1, "Jane", 4, "Jacob", 7, 12.12, "Ben" , "Joe");

Counting backwards

We can also count backwards through our arrayepresents the last elemerat,the second last3
the third last and so on. Thus:

print $numbersl[-2]; # prints "20"

Last index
To find the last index of an array we use a strange looking iootats follows:

my @friends = ("Jane", "Bob", "Alice", "Eve");
print $#numbers; # prints "3" (last index)

unfortunately it's easy to swap tiseand#, resulting in:

print #$numbers; # Whoops!

which comments outnumbers S0 that print has to look for its arguments on the next linecafec
More often than not, we actually want tlengthof the array, rather than the last index.

Perl Training Australia (http://perltraining.com.au/) 11

Chapter 4. Perl Basics

12

Array length

There is one inherentlgcalar piece of information for an array, and that is its length cgiRerl does
it's best todo what | mean (dwim}reating an array like a scalar will return its length.

my $length = @friends; # length is 4

Interpolation
As a convenience, Perl allows us to interpolate arrays intogs in the same way we do scalars:

print "The lucky numbers are @numbers";

In this case, each element of the array is joined togethearaged with single spaces.

Hashes

A hash is an unordered mapping of key-value pairs. Every keyalue must be a scalar. Hashes
can contain any number of key-value pairs and, like arréysetare no restrictions on the scalar
contents, although the keys are always treated as strings.

To understand this mapping consider a telephone book. Itetephone book we have names (keys)
which map to numbers (values). It is easy enough to find ahele@ number given a name, but very
time-consuming to find a name given a telephone numbersfethes are the same.

Likewise it doesn’t make sense for a telephone book to havgpteuentries for the exact same name
(and address) details. How would you know which number tf? G&tius, hash keys must be unique.

The sigil for hashes is the percemd.(There’s no good mnemonic for this one.

my %age_of = (

Jane => 23,
Bob => 63,
Alice => 38,

Eve => 47,

)

my %favourite_colour_of = (

Jane => "Blue",
Bob => "Brown",
Alice => "Green",
Eve => "Yellow",

)

The strange arrow is called thedat commalt behaves like an ordinary comma except it's bigger
(and therefore easy to see) and it automatically quotesale Yo its left. Values on the right hand
side, still need to be quoted.

Hash lookups
To look up a single element in a hash we do the following:

print $age_of{Jane}; # prints "23"

Again we use & sign instead of asign. This is because we’re gettingiaglething from the hash:
ascalar.

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

Changing hash values
To change a value in the hash we use the same syntax:

$age_of{Jane} = 24;

Adding hash pairs

Adding a key-value pair to the hash uses the same as changaigea if the key was not previously
in the hash, it will spring into existence.

$age_of{Donald} = 15; # Donald is now in the hash.

Hash size

To find out how many pairs of keys and values we have, we havedeither th&eys or values
function. These return all of the keys and values respdgtiVaking the result of either function in a
scalar context returns us the result we want.

my $num_of_pairs = keys(%age_of);

Interpolation

There is no one obvious way to display hash data, so hashest dtterpolate in double quoted
strings.

Special Variables

Perl has a number of special variables. The three that wesegllmost often in this course are are
@ARGRANA%ENY

$

$_ is at the same time the most used and least seen speciallgatigbusually pronounced as
dollar underscorébut is sometimes referred to simply iisMany of Perl’s built-in functions take
as their default argument. Suchaist

prints $_;
print;

The usefulness af_ will become apparent as we explore many of the common inpapud, and
string-processing functions of Perl.

@ARGV

@ARGHs the array which stores all the command line argumentstwihie Perl program was called
with. These may include filenames, switches, and other input

Perl Training Australia (http://perltraining.com.au/) 13

Chapter 4. Perl Basics

%ENV

%ENMS a hash of your program’s environment. The keys in this liggtend on your operating
system. Changing values in this hash changes the envirdriargrour program and any other
processes it spawns. However, changes do not affect thetgaoeess; in other words they are lost
after your program has finished running.

Conditionals and truth

14

Perl’s conditional structures should look pretty famitiamost programmers. However, before we
start this section we should take a brief detour into whalt\Rews as true and false.

In fact, it's easier to look at what Perl views as false, beedtis is a very short list. Perl sees the
following four things as false:

1. The undefined value.

2. The number zera@.

3. The string of the single digit zeram" (or'0’).
4. The empty string™ (or”).

Everythingelse is true.

my $undefined; # false

undef; # false

"0"; # false

false

0; # false

"apple"; # true

‘banana’; # true

1, # true

-1, # true

"00"; # true

my @array; # false in scalar context (size 0)
@array = (1,2,3); # now true in scalar context

Comparison operators

Perl has two flavours of comparison operators, strings antbeus.

$a < $b # Numerical less than

$a > $b # Numerical greater than

$a <= $b # Numerical less than or equal
$a >= $b # Numerical greater than or equal
$a == $b # Numerical equality

#a 1= $b # Numerical inequality

$a It $b # String less than

$a gt $b # String greater than

$a le $b # String less than or equal

$a ge $b # String greater than or equal
$a eq $b # String equality

$a ne $b # String inequality

It's important to use the correct comparison operator faryotention.

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

"10" It "9 # true (1 comes before 9)

"00" == 0; # true ("00" is 0 when treated as a number)
"3" == "3com"; # true (but generates a warning)

"3" eq "3com"; # false

Boolean operators

Perl has two flavours of boolean operators, C-like and Engiie. The primary difference between
them is one of precedence. English-like operators havesilthe lowest precedence possible and
are always evaluated last. C-like operators have the sasoegence as they do in C. Itis always
possible to use parentheses to force the order of execatiaiif is recommended that you do so if
you feel any ambiguity exists.

For more information reageridoc perlop

$a && $b # AND: True if $a and $b are true
$a and $b # As above.

$a || $b # OR: True if $a or $b is true (or both)
$a or $b # As above.

| $a # NOT: True if $a is false

not $a # As above.

$a xor $b # Exclusive-OR: True if either $a or $b

is true, but not both.

if-elsif-else
Like most imperative languages, Perl has a fairly standattein-else structure:
if(<condition>) {

}

elsif(<condition>) {

}

else {
}

In Perl’'s case both the parentheses and the braces areadtlireeisit andelse blocks are
optional. Multipleelsift blocks may appear after thfe and before anyise .

unless

Perl also has atmless constructunless is the same ai§ not. For example the following two code
snippets do the same thing.

if(not $I_have_apples) { unless($I_have_apples) {
buy_apples(); buy_apples();

} }

make_apple_pie(); make_apple_pie();

Perl Training Australia (http://perltraining.com.au/) 15

Chapter 4. Perl Basics

Trailing conditionals
Perl provides trailing conditional statements.
buy_apples() if not $I_have_apples;

buy_apples() unless $I_have_apples;

In this form the parentheses and curly braces are not ratfjiHi@vever only a single statement may
appear on the left.

Because the conditional appears on the right, trailing itmmadls have the potential to reduce
readability of your code. If the condition is important, yshould always use the full form. Consider
the following example:

launch_nuclear_missiles() if red_button_pushed();

For someone skimming down the left of the code, this can bie glisconcerting.

Looping constructs

16

Perl has two main looping construcisile andforeach .

while

while(<condition>) {
}

Just like Perl'sf statement, the parentheses and braces are required.

while is typically used to iterate over input from the user or filelamcases where the number of
iterations is either not known beforehand, or not relevant.

The following code echos back data passed in on STDIN:
while(<STDIN>) {

print;
}

This takes advantage &f in two ways.while(<STDIN>) is a short-cut for:
while(defined($_ = <STDIN>))

In fact, we can further reduce our above example to the fatigw

while(<>) {

}

<> is a highly magical operator. First it checEB®RGtO see if there are arguments to use a filename.
If there are, it will open each file in order, and iterate ttgbwach line. lfl@ARGs empty, it checks
for input onSTDIN.

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

foreach

using $_
foreach (@array) {

}

foreach my $value (@array) {

}

Again, parentheses and braces are required.

foreach is very handy for iterating over arrays and lists. In the fissdmple$_ is set to each array
element as we walk through. In the second exarsglee is set instead, angl remains untouched.

In foreach loops the iteratory_ or $value in the above example the element in the array. Thus
the below code squares the values in the array:

foreach my $value (@array) {
$value = $value *S$value;

}

Subroutines

sub name {

}

Subroutines are user-written functions. They are compitdéte same time as the rest of your code,
but do not get executed (regardless of where they appeauinpyogram) until they are called.

Call the buy_apples subroutine:
buy_apples();

then later...

The buy_apples subroutine

sub buy_apples {
go_shopping();
select_apples();
pay();

}

Subroutines take one or more scalar arguments (rememberthgs and hashes can be treated as
just lists of scalars), and can return one or more scalaguments are stored in ti@ array.

print second_arg(@array);

sub second_arg {
my ($first, $second) = @_;

return $second;

Perl Training Australia (http://perltraining.com.au/) 17

Chapter 4. Perl Basics

print first_last(@array);

sub first_last {
my $first = shift @_;
my $last = pop @_;

return ($first, $last);
}

Passing hashes and arrays into subroutines causes these théar identity.

if(greater_length(@arrayl, @array2)) {
#o..

}

sub greater_length {
my (@arrayl, @array2) = @_;

@arrayl now has =all * of the elements
@ @array2 is *empty *

return @arrayl > @array?2; # Always true!

}
To avoid this use references:
if(greater_length(\@arrayl, \@array2)) {

o
}

sub greater_length {
my ($arrayl, $array2) = @_;

my @arrayl = @$arrayl;
my @array2 = @$array2;

return @arrayl > @array?2;

File I/O

To open files in Perl we usually thgen function for convenience. We can also use djx@pen
function if we need precision. Then function allows files to be opened in the following modes:

<
Reading. If file doesn’t exist an error will occur.

>
Writing. If the file already exists, it will be clobbered, juike the Unix>. If the file doesn’t
exist, it will be created.

>>

Appending. If the file already exists, data will be added ®¢hd. If the file doesn’t exist, it
will be created.

18 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

Pipe. Execute the specified process and either pipe inpytdotake output from it. This will
be covered more later.

A plus (+) character can be added to the mosle ¢+, >>+) in order open the file for both reading
and writing. This is very rarely as useful as it might at firstisd.

Reading

Open file for reading, die on failure
open(FILE, "<", $filename) or die "Could not open $filename TR

open(FILE, "< $filename") or die "Could not open $filename TR

while(<FILE>) {
process line

}

The three argument version gfen has the following security advantages over the two argument
version, and is recommended.

« The mode must be specified. In the two argument versi@peaf it is possible to omit the mode.
If however, the filename then contains a mode character xfmmelesfiename = ">
letc/passwd" , that will be assumed to be the file mode. This can have uraldsiconsequences.

- Filenames are taken literally. In the two argument versiospen whitespace before and after the
filenames is ignored. Having Perl treat your filenames litgraakes it possible to more easily
specify filenames which include unescaped spaces and skglicharacters.

Traditionally, bareword filehandles in Perl are true gleb#lanother part of your script, or a module
you import, opens a file and uses the same filehandle name asli@n section of your code, the old
file will be closed.

Fortunately in Perl versions 5.6.0 and above, we can usardilahandles:
open(my $fh, "<" $filename) or die "Could not open $filename TR

while(<$fh>) {
process line

}

These have the advantage that access to the file now has sofmon as the filehandle goes out of
scope the file will be closed.

Changing the input record separator

By default, files will be read in line by line. To change this meed to change the input record
separatos/ . Changing this also changes whksémp removes when called.

$/ = undef; # Read the whole file in at once
$ =" # Read in paragraph by paragraph
$/ = "\n%\n"; # Read in Unix fortunes

open(my $fh, "<", $fortunes) or die $!;

while(<$fh>) {
chomp; # remove \n%\n

Perl Training Australia (http://perltraining.com.au/) 19

Chapter 4. Perl Basics

CPAN

20

Do something with fortune

}

Keep in mind that/ is a true global. Changing it in one part of your program clesrigfor all later
parts of your program. If you need to charggewithin a large programpcaliseyour change:

{

local $/ = "\n%\n";
open(my $fh, "<", $fortunes) or die $!;

while(<$fh>) {
chomp; # remove %

Do something with fortune
}

Usinglocal here, tells Perl to ensure that this change only occurs #dthation of the block (the
outer curly braces). Once execution leaves the béoakill automatically revert to its previous
value. Subroutines called from within your block will see tbcalised value ofo/.

Writing

Open file for writing, die on failure

open(my $fh, ">", $filenamel) or die "Could not open $filena me: $!";
open(FILE, ">>", $filename2) or die "Could not open $filena me: $!";

foreach my $number (1 .. 10) {
print {$fh} $number, "\n";
print FILE $number, "\n";
}

The example above shows how to print the numbers 1 through to tivo different files. In the first,
we clobber the file if it already exists, in the second,appendo it.

Notice that we danot include a comma after the filehandle when we are printing toserting a
comma would tell Perl to print out the filehandle memory lama{which wouldn’t look very
interesting) rather than print to that location.

The curly braces arourgih in the firstprint statement are not required, but help make the
filehandle stand out and hopefully remove the temptatiomitbeacomma after it.

Perl’s biggest strength comes from its community. As anresita to that, many Perl programmers
write and maintain modules for free use for all as part of tben@rehensive Perl Archive Network
(CPAN).

CPAN provides more than 10,000 modules, making it an exaiediarting point to help solve your
particular problem. However, you should keep in mind thatalldCPAN modules are created equal.
Some are much better documented and written than othersitAsimy situation when you're using

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics
third party code, you should take the time to determine thitalsility of any given module for the
task at hand.

Many of the popular CPAN modules are pre-packaged for poparating systems. In addition,
thecpAN.pmmodule that comes with Perl can make the task of finding artdllimg modules from
CPAN much easier.

For modules that aren’t packaged for your operating sysyemcan use th€PAN shell This
requires administrator privileges, but on most operatyggesns can be as simple typiagn at the
shell prompt:

hostname:/root# cpan

cpan shell -- CPAN exploration and modules installation (v1 .7601)
ReadLine support enabled

cpan>

Once inside the shelhelp provides a list of help, anidstall ~ will install a particular module. For
example, to install the modulermL:: Template

cpan> install HTML::Template
The CPAN shell will locate the module, download it, checkdigpendencies, and perform any
testing required.

For ActiveState Perl installations (which includes mostiMsoft Windows machines) the use of
PPM (Programmer’s Package Manager) is recommended. PRMIpsca command line interface
for downloading and installing pre-compiled versions ofsSnGPAN modules.

Installing modules using PPM is just as easy as the CPAN:shell

C:\> ppm

PPM - Programmer's Package Manager version 3.4.

Copyright (c) 2001 ActiveState Software Inc. All Rights Res erved.
Entering interactive shell. Using Term::ReadLine::Perl a s readline library.

Type ’help’ to get started.
ppm>

PPM expects double-colons in module names to be replacadiagthes for package names. So to
install theHTML:: Template module we would use:

ppm> install HTML-Template

If automated installation fails using either system, or wendt have administrator access to the
machine, then we can also install a CPAN module manually.\CP®dules come in compressed
tarballs (.tar.gz), and should contaireADMEN/ONNSTALL file that contains instructions for
installation. However for almost all modules the proceedsithe same:

perl Makefile.PL
make

make test
make install

On Windows systems the freeake utility from Microsoft can be used instead @fke (but needs to
be installed separately).

Perl Training Australia (http://perltraining.com.au/) 21

Chapter 4. Perl Basics

autodie

Many Perl functions return a true value on success and avalse on failure. Assuming success
without checking for failure can cause very strange erfbnsis, it is a wise idea to always check
your return values.

open(my $fh, "<", $filename) or die "Failed to open: $!";

close $fh; # Oops! Forgot to check for failure!

Unfortunately it's very easy to forget to add an "or die" taiadtion call, and making sure you add
them all does tend to clutter up your code. A good alternasive use theutodie module.autodie
replaces functions with equivalents which succeed or die:

use autodie gw(open close);
open(my $fh, "<", $filename);
close $fh;

Now if any calls toopen or close fail, our program will automatically die with an error megsaWe
can useutodie with any Perl built-in function exceptint

Chapter summary

This chapter gave a whirl-wind tour through Perl's essdsitthe variables, conditionals, looping
constructs, subroutines and file 1/0. We also briefly covéi®a to install modules via CPAN, and
the joys of theautodie module.

22 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

In this chapter...

In this chapter we begin to explore Perl’s powerful reguiqression capabilities, and use regular
expressions to perform matching and substitution operaiim text.

Regular expressions are a big reason of why so many peopfefeal. One of Perl’s most common
uses is string processing and it excels at that becauselmfiitan support for regular expressions.

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of

the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

What are regular expressions?

The easiest way to explain this is by analogy. You will prdigdde familiar with the concept of
matching filenames under DOS and Unix by using wild cardst or /usr/locall = for instance.
When matching filenames, an asterisk can be used to matctuamyan of unknown characters, and
a question mark matches any single character. There aréeatswell-known filename matching
characters.

Regular expressions are similar in that they use speciahctes to match text. The differences are
that more powerful text-matching is possible, and that gt@&special characters is different.

Regular expressions are also known as RESs, regexes, anghsege

Regular expression operators and functions

M/PATTERN/ - the match operator

The most basic regular expression operator is the matchegtorm/PATTERNL/.

- Works ons_ by default.

- In scalar context, returns trug)(if the match succeeds, or false (the empty string) if thechnat
fails.

- Inlist context, returns a list of any parts of the patternatihare enclosed in parentheses. If there
are no parentheses, the entire pattern is treated as ifé& pagenthesised.

« Themis optional if you use slashes as the pattern delimiters.

- If you use themyou can use any delimiter you like instead of the slashes iShiery handy for
matching on strings which contain slashes, for instanactbry names or URLSs.

« Using theii modifier on the end makes it case insensitive.

Perl Training Australia (http://perltraining.com.au/) 23

Chapter 5. Regular expressions

24

while (<>) {

print if m/fool; # prints if a line contains "foo"

print if m/fooli; # prints if a line contains "foo", "FOO", et c
print if /fooli; # exactly the same; the m is optional

print if m#foo#i; # the same again, using different delimite rs

print if /http:VW/; # prints if a line contains "http://"

suffers from "leaning-toothpick-syndrome".
print if m!http:/!; # using ! as an alternative delimiter
print if m{http://}; # using {} as delimiters

S/IPATTERN/REPLACEMENT/ - the substitution operator

This is the substitution operator, and can be used to findabidth matches a pattern and replace it
with something else.

- Works ons_ by default.
- In scalar context, returns the number of matches found gridaed.

- In list context, behaves the same as in scalar context anchesthe number of matches found and
replaced (a cause of more than one mistake...).

- You can use any delimiter you want, the same asrheoperator.

- Using/g on the end of it matches globally, otherwise matches (anldcep) only the first
instance of the pattern.

- Using theii modifier makes it case insensitive.
fix some misspelled text

while (<>) {

s/freind/friend/g; # Correct freind to friend on entire lin e.
s/teh/thelg;
sljsut/just/g;
s/pual/Paullig; # Correct (case insensitive) all occurren ces
of "pual" (or "Pual" or "PuAl" etc)
print;
}
Exercises

The above example can be found:karcises/spelicheck.pl

1. Run the spelling check script over thercises/spellcheck.xt file.

2. There are a few spelling errors remaining. Change yowgrara to handle them as well. An
answer can be found ixercises/answers/spelicheck.pl

Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

Binding operators

If we want to usen// ors/// to operate on something other thanwe need to use binding
operators to bind the match to another string.

Table 5-1. Binding operators

Operator Meaning
=~ True if the pattern matches
I~ True if the pattern doesn’t match

print "Please enter your homepage URL: "
my $url = <STDIN>;

if(Surl '~ /~http:/) {
print "Doesn’t look like a http URL.\n";
}
if ($url =~ /geocities/) {
print "Ahhh, | see you have a geocities homepage!\n";
}
my $string = "The act sat on the mta";
$string =~ s/act/cat/;

$string =~ s/mta/mat/;

print $string; # prints: "The cat sat on the mat";

Easy modifiers

There are several modifiers for regular expressions. We'ga swo already.

Table 5-2. Regexp modifiers

Modifier Meaning

[Make match/substitute match case insensitive

g Make substitute global (all occurrences are
changed)

You can find out about the other modifiers by reading perldoc perlre .

Meta characters

The special characters we use in regular expressions ded nadta charactersecause they are
characters that describe other characters.

Perl Training Australia (http://perltraining.com.au/) 25

Chapter 5. Regular expressions

Some easy meta characters

Table 5-3. Regular expression meta characters

Meta character(s) Matches...

Start of string

$ End of string

IAny single character except
n Newline

t Matches a tab

s IAny whitespace character, such as space, tab| or
newline

IAny non-whitespace character

Any digit (0 to 9)

Any non-digit

Any "word" character - alphanumeric plus
underscore.()

IAny non-word character

s |0 |2 |0

o

A word break - the zero-length point between a
word character (as defined above) and a non-word
character.

B /A non-word break - anything other than a word
break.

Any character that isn’'t a meta character just matched.itégbu want to match a character that's
normally a meta character, you can escape it by precedinightalackslash.

These and other meta characters are all outlined in chapter 5 (chapter 2, 2nd Ed) of the

Camel book and in the perre manpage - type perldoc perlre to read it.

C It's possible to use the /m and /s modifiers to change the behaviour of the first three meta
characters (», $, and .) in the table above. These modifiers are covered in more detail later in the
course.

@Under newer versions of Perl, the definitions of spaces, words, and other characters is
locale-dependent. Usually Perl ignores the current locale unless you ask it to do otherwise, so if
you don’t know what's meant by locale, then don’t worry.

26 Perl Training Australia (http://perltraining.com.au/)

Some quick examples:

Chapter 5. Regular expressions

Perl regular expressions are often found within slashes

[cat/ #
#
["cat/ #
Nscat\s/ #
#
N\bcat\b/

H oH R

we can interpolate variables just like in strings:

my $animal = "dog"

/$animal/ #

/$animal$/ #

A$\d\.\d\d/ #
#
#
#
#

Quantifiers

matches the three characters
¢, &, and t in that order.

matches c, a, t at start of line

matches c, a, t with spaces on
either side

Same as above, but won't
include the spaces in the text
it matches. Also matches if
cat is at the very start or
very end of a string.

we set up a scalar variable

matches d, o, g
matches d, o, g at end of line

matches a dollar sign, then a
digit, then a dot, then
another digit, then another
digit, eg $9.99

Careful! Also matches $9.9999

What if, in our last example, we'd wanted to say "Match a dottaen any number of digits, then a
dot, then only two more digits"? What we need are quantifiers.

Table 5-4. Regular expression quantifiers

Quantifier Meaning

? Oor1l

& 0 or more

+ 1 or more

{n} match exactly n times

.} match n or more times

{n,m} match between n and m times

Here are some examples to show you how they all work:

IMI\.? Fenwick/;
/camel. = perll/;
same line.

Matches "Mr. Fenwick" or "Mr Fenwick"
Matches "camel" before "perl" in the

Nw+/; # One or more word characters.
/x{1,10}/; # 1-10 occurrences of the letter "x".

Perl Training Australia (http://perltraining.com.au/)

27

Chapter 5. Regular expressions

Exercises

For these exercises you may find using the following strectiseful:

while(<>) {
chomp;

print "$_ matches!\n" if (/PATTERN/); # put your regexp here
}

This will allow you to specify test files on the command linecteeck against, or to provide input via
STDIN. Hit CTRL -D to finish entering input via STDIN. (Use the key combinat@®fiRL -Z on
Windows).

You can find the above snippet iexercises/regexploop.pl

1. Earlier we mentioned writing a regular expression forahetg a price. Write one which
matches a dollar sign, any number of digits, a dot and theatlgxavo more digits.

Make sure you're happy with its performance with test caikesthe following:12.34 ,
$111.223 , $.24 .

2. Write a regular expression to match the word "colour” wither British or American spellings
(Americans spell it "color")?

3. How can we match any four-letter word?

Seeexercises/answers/regexp.pl for answers.

Grouping techniques

Let's say we want to match any lower case charastematches both upper case and lower case so
it won't do what we need. What we need here is the ability toofmany characters ingroup.

Character classes

A character class can be used to find a single character thehesaany one of a given set of
characters.

Let's say you're looking for occurrences of the word "gray'téxt, then remember that the
American spelling is "gray". The way we can do this is by usithgracter classes. Character classes
are specified using square brackets, thigaly/

We can also use character sequences by saying things-ike or [0-9] . The sequencas andw
can easily be expressed as character clagsgs: and[a-zA-z0-9] respectively.

Inside a character class some characters take on speciaingeaFor example, if the first character
is a caret, then the list is negated. That meansjthat is the same a® --- that is, it matches any
non-digit character.

28 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

Here are some of the special rules that apply inside charaeteses.

- ~ at the start of a character class negates the characterreltss than specifying the start of a
line.

- - specifies a range of characters. If you wish to match a literainust be either the first or the
last character in the class.

«$.(0{ = +andother meta characters taken literally.

Exercises

Your instructor will help you do the following exercises agraup.

1. How would we find any word starting with a letter in the firsiffof the alphabet, or with X, Y,
orZ?

2. What regular expression could be used for any word thetsstath lettersotherthan those
listed in the previous example.

3. There’s almost certainly a problem with the regular egpi@n we've just created - can you see
what it might be?

Alternation

The problem with character classes is that they only matelcharacter. What if we wanted to
match any of a set of longer strings, like a set of words?

The way we do this is to use the pipe sympdbr alternation:

[rabbit|chicken|dog/ # matches any of our pets

&
The pipe symbol (also called vertical bar) is often found on the same key as \ .

However this will match a number of things we might not intérntd match. For example:

- rabbiting

+ chickenhawk

- hotdog

We need to specify that we want to only match the word if it'sadme by itself.

Now we come up against another problem. If we write sometlikeg

/~rabbit|chicken|dog$/

to match any of our pets on a line by itself, it won’t work quite we expect. What this actually says
is match a string that:

- starts with the string "rabbit" or

+ has the string "chicken" in it or

Perl Training Australia (http://perltraining.com.au/) 29

Chapter 5. Regular expressions

- ends with the string "dog"

This will still match the three incorrect words above, whistmot what we intended. To fix this, we
enclose our alternation in round brackets:

/"\(rabbit|chicken|dog)$/

Finally, we will now only match any of our pets on a line, byeifs

Alternation can be used for many things including selectiagders from emails for printing out:
a simple matching program to get some email headers and prin t them out

while (<>) {
print if /~(From|Subject|Date):\s/;
}

The above email example can be foun@sisrcises/mailhdr.pl

The concept of atoms

Round brackets bring us neatly into the concept of atomswidrd "atom" derives from the Greek
atomosmeaning "indivisible" (little did they know!). We use it toean "something that is a chunk of
regular expression in its own right".

Atoms can be arbitrarily created by simply wrapping thingsdund brackets --- handy for
indicating grouping, using quantifiers for the whole grotiprace, and for indicating which bit(s) of
a matching function should be the returned value.

In the example used earlier, there were three atoms:

1. start of line
2. rabbit or chicken or dog
3. end of line
How many atoms were there in our dollar prices example e@rlie

Atomic groupings can have quantifiers attached to them.ristance:

match four words (without punctuation)
/(\b\w+\s =){4}/;

match three or more words starting with "a" in a row
eg "all angry animals"
I(\ba\w *\s *){3,}/;

match a consonant followed by a vowel twice in a row

eg "tutu" or "tofu"
Nb([MW\d_aeiou][aeiou]){2}\b/;

30 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

Exercises

1. Determine whether your name appears in a string (an aissiwer
exercises/answers/namere.pl).

2. What pattern could be used to match a blank line? (Answer:

exercises/answers/blanklinere.pl)
3. Remove footnote references (like [1]) from some text éserises/footnote.txt for some
sample text, andxercises/answers/footnote.pl for an answer). (Hint: have a look at the

footnote text to determine the forms footnotes can take).

4. Write a script to search a file for any of the names "Yassafait, "Boris Yeltsin" or "Paul
Keating". Print out any lines which contain these names. daufind a file including these
names and others bxercises/famous_people.txt . (Answer:
exercises/answers/namesre.pl)

5. What pattern could be used to match any of: Elvis Presleis Bron Presley, Elvis A. Presley,
Elvis Aaron Presley. You can find a test filedxercises/elvis.txt . (Answer:
exercises/answers/elvisre.pl)

6. What pattern could be used to match an IP address such.a68.53.124 , where each part of
the address is a number from 0 to 2557 (Answdtcises/answers/ipre.pl)

Chapter summary

- Regular expressions are used to perform matches and stibston strings.

- Regular expressions can include meta-characters (chesacith a special meaning, which
describe sets of other characters) and quantifiers.

- Character classes can be used to specify any single instéacset of characters.
« Alternation may be used to specify any of a set of sub-exjmess

- The matching operator is/PATTERN/ and acts os_ by default.

- The substitution operator &PATTERN/REPLACEMENT/and acts ois_ by default.

- Matches and substitutions can be performed on strings tithas_ by using the=~ (and:~)
binding operator.

Perl Training Australia (http://perltraining.com.au/) 31

Chapter 5. Regular expressions

32 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

In this chapter...

This chapter builds on the basic regular expressions taaghiér in the course. We will learn how to
handle data which consists of multiple lines of text, inahgchow to input data as multiple lines and
different ways of performing matches against that data.

Assumed knowledge

You should already be familiar with the following topics:

- Regular expression meta characters
- Quantifiers

- Character classes and alternation

« Them// matching function

« Thes/// substitution function

« Matching strings other tha® with the=~ matching operator

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of

the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

Capturing matched strings to scalars

Perl provides an easy way to extract matched sections ofudaregxpression for later use. Any part
of a regular expression that is enclosed in parentheseptisrea and stored into special variables.
The substring that matches first set of parentheses willdvsedins1, and the substring that matches
the second set of parentheses will be storegtiand so on. There is no limit on the number of
parentheses and associated numbered variables that yog&an

10w)(\Ww)/; # matches 2 word characters and stores them in $1 , $2
1(w+)/; # matches one or more word characters and stores the m in $1

Parentheses are numbered from left to right byaheningparenthesis. The following example
should help make this clear:

$_ = "fish";

1((Ww)(\Ww))/; # captures as follows:

#$1 = "', $2 = F, $3 = 7

$_ = "1234567890";

1(\d)+/; # matches each digit and then stores the last digit
matched into $1
1(\d+)/; # captures all of 1234567890

Perl Training Australia (http://perltraining.com.au/) 33

Chapter 6. Advanced regular expressions

Evaluating a regular expression in list context is anotheey W capture information, with
parenthesised sub-expressions being returned as a ligtal\ese this instead of numbered variables
if we like:

$_ = "Our server is training.perltraining.com.au.";

my ($full, $host, $domain) = /(((\w-]+)\.(\w.-]+))/;

print "$1\n"; # prints "training.perltraining.com.au."

print "$full\n"; # prints "training.perltraining.com.au

print "$2 : $3\n"; # prints "training : perltraining.com.au .
print "$host : $domain\n" # prints "training : perltraining .com.au."

C A regular expression that fails to match the given string does not always reset $1, $2 etc.
Therefore, if we do not explicitly check that our regular expression worked, we can end up using
data from a previous match. This can mean that the following code may cause unexpected
surprises:

while(<>) {
check that we have something that looks like a date in
YYYY-MM-DD format.

if(/(\d{4})-(\d{2})-(d{2})/) {
print STDERR "valid date\n";
}

next unless $1;

if($1 >= $recent_year) {
print RECENT_DATA $_;
}
else {
print OLD_DATA $_;
}
}

If this code encounters a line which doesn't appear to be a valid date, the line may be printed to
the same file as the last valid line, rather than being discarded. This could result in lines with
dates similar to "1901-3-23" being printed to RECENT_DATAor lines with dates like "2003-1-1"
being printed to OLD_DATA

Extended regular expressions

34

Regular expressions can be difficult to follow at times, esgly if they’re long or complex.
Luckily, Perl gives us a way to split a regular expressiomasmultiple lines, and to embed
comments into our regular expression. These are knowertasded regular expressians

To create an extended regular expression, we use the spesialtch. This has the following effects
on the match part of an expression:

+ Spaces (including tabs and newlines) in the regular exjpresse ignored.
- Anything after an un-escaped hasgh i ignored, up until the end of line.

Extended regular expressions do not alter the format ofébersd part in a substition. This must still
be written exactly as you wish it to appear.

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

If you need to include a literal space or hash in an extendprkesgion you can do so by preceeding
it with a backslash.

By using extended regular expressions, we can change this:

Parse a line from 'Is -I
mM{ N ([\W-]+)\s+(\d+)\s+(\Ww+)\s+(\w+)\s+(\d+)\s+(\w+\ sH\d+H\s+[\d:]+)\s+(. *)$}

into this:

Parse a line from ’ls -I

m{
N # Start of line.
(Nw-]+)\s+ # $1 - File permissions.
(\d+)\s+ # $2 - Hard links.
(\Ww+)\s+ # $3 - User
(\Ww+)\s+ # $4 - Group
(\d+)\s+ # $5 - File size
(\WWH\s+\d+\s+[\d:]+)\s+ # $6 - Date and time.
(. *) # $7 - Filename.
$ # End of line.
X
As you can see, extended regular expressions can make yaeinoach easier to read, understand,
and maintain.
Exercise

Web server access logs typically contain long lines of imfation, only some of which is of interest
at any given time. In thexercises/access-pta.log file you'll see an example taken from Perl
Training Australia’s webserver.

1. Write a regular expression which captures the requeginothe access date and requested
page. Print this out for each access in the file. A startingram can be found in
exercises/log-process.pl

You can find an answer to this exerciseiarcises/answers/log-process.pl

Advanced exercise

1. Split tab-separated data into an array then print out ekrhent using &reach loop (an
answer’s inexercises/answers/tab-sep.pl , an example file is imxercises/tab-sep.txt).

Greediness

Regular expressions are, by default, "greedy". This mdzatsny regular expression, for instance
.=, will try to match the biggest thing it possibly can. Greestia is sometimes referred to as
"maximal matching".

Greediness is also left to right. Each section in the reg®pression will be as greedy as it can
while still allowing the whole regular expression to matthassible. For example,

Perl Training Australia (http://perltraining.com.au/) 35

Chapter 6. Advanced regular expressions

$_ = "The cat sat on the mat";

fle. *(*)(m. =1)/;

print $1; # prints "cat sat on t"
print $2; # prints "he "
print $3; # prints "mat";

It is possible in this example for another set of matches twod he first expression =t could
have matchedat leaving sat on the to be matched by the second expressiorHowever, to do
that, we need to stop =t from being so greedy.

To make a regular expression quantifier not greedy, follamitth a question mark. For example?.
This is sometimes referred to as "minimal matching".

$_ = "The fox is in the box.";
I(f. *x); # greedy -- $1 = “fox is in the box"
I(f. *=2x)/; # not greedy - $1 = “fox"
$_ = "abracadabra”;
l(a. *a)/ # greedy -- $1 = "abracadabra"
l(a. =?a)l # not greedy - $1 = "abra"
/(a. *?a)(. *a)/ # first is not greedy -- $1 = "abra"
second is greedy -- $2 = "cadabra"
l(a. *a)(. *7a)l # first is greedy -- $1 = "abracada"

second is not greedy -- $2 = "bra"

/(a. *7?a)(. *7a)l # first is not greedy -- $1 = "abra"
second is not greedy -- $2 = "ca"

Exercise

1. Write a regular expression that matches the first and lasiswon a line, and print these out.

More meta characters

Here are some more advanced meta characters, which buitct@mes covered earlier.

Table 6-1. More meta characters

Meta character Meaning

c X Control character, i.€CTRL -x

0 nn Octal character represented by

X nn Hexadecimal character representechby

| Lowercase next character

u Uppercase next character

Lowercase untile

U Uppercase untie

36 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

Meta character Meaning

Q Quote (disable) meta characters uril

E End of lowercase/uppercase/quote

A Beginning of string, regardless of whether /m is
used.

z End of string (or before newline at end),
regardless of whether /m is used.

z IAbsolute end of string, regardless of whether /m is
used.

search for the C++ computer language:

[C++/ # wrong! regexp engine complains about the plus signs
[C\+\+/ # this works

NQC++\E/ # this works too

search for "bell" control characters, eg CTRL-G

NG/ # this is one way
N007/ # this is another -- CTRL-G is octal 07
N\x07/ # here it is as a hex code

Read about all of these and more in perldoc perlre .

Working with multi-line strings

Often, you will want to read a file several lines at a time. Gdeis for example, a typical Unix
fortune cookie file, which is used to generate quotes fofdhtene command:

All language designers are arrogant. Goes with the territor Yoo I7)
-- Larry Wall in <1991Jul13.010945.19157 @netlabs.com >
%
Although the Perl Slogan is There’s More Than One Way to Do It, | hesitate
to make 10 ways to do something. :-)
-- Larry Wall in <9695@jpl-devvax.JPL.NASA.GOV >
%
And don't tell me there isn't one bit of difference between nu Il and space,
because that's exactly how much difference there is. :-)
-- Larry Wall in <10209@jpl-devvax.JPL.NASA.GOV >

%
"And | don't like doing silly things (except on purpose).”
-- Larry Wall in <1992Jul3.191825.14435@netlabs.com >
%
: And it goes against the grain of building small tools.
Innocent, Your Honor. Perl users build small tools all day lo ng.
-- Larry Wall in <1992Aug26.184221.29627 @netlabs.com >
%
/+ And you'll never guess what the dog had */
[* in its mouth... */
-- Larry Wall in stab.c from the perl source code
%
Be consistent.
-- Larry Wall in the perl man page

Perl Training Australia (http://perltraining.com.au/) 37

Chapter 6. Advanced regular expressions

The fortune cookies are separated by a line which contaitisngpbut a percent sign.

To read this file one item at a time, we would need to set thenikeli to something other than the
usuahn -in this case, we’'d need to set it to something like\n .

To do this in Perl, we use the special variable This is called the input record separator.

$/ = "\n%\n";
while (<>) {
$_ now contains one RECORD per loop iteration

}

Conveniently enough, settirgg to ™ will cause input to occur in "paragraph mode", in which two
or more consecutive newlines will be treated as the delimibadefinings/ will cause the entire file
to be slurped in.

undef $/;
$ = <>; # whole file now here

Changing $/ doesn’t just change how readline (<>) works. It also affects the chomp function,
which always removes the value of $/ from the end of its argument. The reason we normally
think of chomp removing newlines is that ¢/ is set to newline by default.

@It’s usually a very good idea to use local when changing special variables. For example, we
could write:

{
local $/ = "\n%\n";
$_ = <> # first fortune cookie is in $_ now

}

to grab the first fortune cookie. By enclosing the code in a block and using local, we restrict the
change of $/ to that block. After the block $/ is whatever it was before the block (without us
having to save it and remember to change it back). This localisation occurs regardless of how
you exit the block, and so is particularly useful if you need to alter a special variable for a
complex section of code.

Variables changed with local are also changed for any functions or subroutines you might call
while the local is in effect. Unless it was your intention to change a special variable for one or
more of the subroutines you call, you should end your block before calling them.

It is a compile-time error to try and declare a special variable using my.

Special variables are covered in Chapter 28 of the Camel book, (pages 127 onwards, 2nd

Ed). The information can also be found in perldoc perlvar .

Sinces/ isn’'t the easiest name to remember, we can use a longer naogérgytheEnglish module:

use English;
$INPUT_RECORD_SEPARATOR = "\n%\n"; # long name for $/
SRS = "\n%\n"; # same thing, awk-like

38 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

The English module is documented on page 884 (page 403, 2nd Ed) of the Camel book or
in perldoc English . You can find out about all of Perl’'s special variables’ English names by
reading perldoc perlvar .

Exercise

1. In your directory is a file calleexercises/perl.txt which is a set of Perl-related fortunes,
formatted as in the above example. This file contains a graaymuotes, including the ones in
the example above and many many more. Use multi-line regufaessions to find only those
guotes which are from therl man page . (Answer:exercises/answers/fortunes.pl)

Regexp modifiers for multi-line data

Perl has two modifiers for multi-line data. and/m. These can be used to treat the string you're
matching against as either a single line or as multiple limégir presence changes the behaviour of
caret ¢), dollar () and dot ().

By default caret matches the start of the string. Dollar ime¢cthe end of the string (regardless of
newlines). Dot matches anything but a newline character.

With the/s modifier, caret and dollar behave the same as in the defadt bat dot will match the
newline character.

With the/m modifier, caret matches the start of any line within the gtraollar matches the end of
any line within the string. Dot does not match the newlinerabter.

my $string = "This is some text
and some more text
spanning several lines";

if ($string =~ /~and some/m) { # this will match because

print "Matched in multi-line mode\n"; # ”~ matches the start o f any
} # line in the string
if ($string =~ /~and some/) { # this won't match

print "Matched in single line mode\n"; # because ~ only match es
} # the start of the string.
if($string =~ /~This is some/) { # this will match

print "Matched in single line mode\n"; # (and would have with out
} # the /s, or with /m)
if($string =~ /(some. xtext)/s) { # Prints "some text\nand some more text"

print "$1\n"; # Note that . is matching \n here
}
if($string =~ /(some. xtext)) { # Prints "some text"

print "$1\n"; # Note that . does not match \n
}

The differences between default, single line, and mulié-lnode are set out very succinctly by
Jeffrey Friedl in Mastering Regular Expressions (see ththeuReading at the back of these notes
for details). The following table is paraphrased from the on page 236 of that book.

Perl Training Australia (http://perltraining.com.au/) 39

Chapter 6. Advanced regular expressions

His term "clean multi-line mode" describes one in which eafth, $ and. all do what many

programmers expect them to do. That iwill match newlines as well as all other characters, and

ands each work on start and end of lines, rather than the startatd#&the string.

Table 6-2. Effects of single and multi-line options

Mode Specified with matches... $ matches... Dot matches
newline

default neither/s nor/m [start of string end of string No

single-line /s start of string end of string Yes

multi-line /m start of line end of line No

clean multi-line |both/m and/s start of line end of line Yes

Modifiers may be clumped at the end of a regular expressiopefimrm a search using “clean
multi-line” irrespective of case your expression mightkdite this

/"the start. * end$/msi

and if we had the following strings

$stringl = "the start of the day
is the end of the night";

$string2 = "10 athletes waited,
the starting point was ready
how it would end

was anyone’s guess";

$string3 = uc($string2); # same as string 2 but all in upperca se

we’d expect the match to succeed with beihing2 andsstringd but not withsstringl

Back references

Special variables

There are several special variables related to regulaesgjuns. The parenthesised names beside
them are their long names if you use the English module.

+ $&is the matched text (MATCH)

+ $ (dollar backtick) is the unmatched text to the left of the chat text (PREMATCH)

+ $ (dollar forwardtick) is the unmatched text to the right oé timatched text (POSTMATCH)
+ $1,$2, $3, etc. The text matched by the 1st, 2nd, 3rd, etc sets of jeeses.

All these variables are modified when a match occurs, and earséd in the same way that other
scalar variables can be used.

my ($match) = m/A(\d+)/;
print $match;

40 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

or alternately...
m/MNd+/;
print $&;

match the first three words...

m/A\w+) (\w+) (\w+)/;
print "$1 $2 $3\n";

You can also usg1 and other special variables in substitutions:

$string
$string

"It was a dark and stormy night.";
~ s/(dark|wet|cold)/very $1/;

@When Perl sees you using PREMATCH ($*), MATCH ($&), or POSTMATCH ($'), it assumes that
you may want to use them again. This means that it has to prepare these variables after every
successful pattern match. This can slow a program down because these variables are
"prepared" by copying the string you matched against to an internal location.

If the use of those variables make your life much easier, then go ahead and use them. However,
if using $1, $2 etc can be used for your task instead, your program will be faster and leaner by
using them.

@If you want to use parentheses simply for grouping, and don’t want them to set a $1 style
variable, you can use a special kind of non-capturing parentheses, which look like (2: ...)

this only sets $1 - the first set of parentheses are non-capt uring
m/(?:Dr|Prof) (\w+)/;

The special variablesl and so on can be used in substitutions to include matcheahtéhe
replacement expression:

swap first and second words
sifn(w+) (\w+)/$2 $1/;

However, this is no use in a simple match pattern, becsusad friends aren’t set until after the
match is complete. Something like:

print if m{(tw+) $1};
... will notmatch "this this" or "that that". Rather, it will match a sgicontaining "this" followed by
whatevers1 was set to by an earlier match.

In order to match "this this" (or "that that") we need to use ¢pecial regular expression meta
charactersi ,\2 , etc. These meta characters refer to parenthesised partsatth pattern, just as
$1 does, butvithin the same matctather than referring back to the previous match.

print if found repeated words starting with 't ie "this th is"

(note, this contains a subtle bug which you'll find in the ex ercise)
print if m{(t\w+) \1};

Perl Training Australia (http://perltraining.com.au/) 41

Chapter 6. Advanced regular expressions

Exercises

1. Write a script which swaps the first and the last words oh é&re.

2. Write a script which looks for doubled terms such as "baamgg) or "quack quack" and prints
out all occurrences. This script could be used for findinggraphic errors in text. (Answer:
exercises/answers/double.pl)

Advanced exercises

1. Make your swapping-words program work with lines thattstad end with punctuation
characters. (Answeexercises/answersffirstlast.pl)

2. Modify your repeated word script to work across line boanes (Answer:
exercises/answers/multiline_double.pl)

3. What about case sensitivity with repeated words?

Chapter summary

42

- Input data can be split into multi-line strings using thegpkvariables/ , also known as
$INPUT_RECORD_SEPARATOR

- Thess and/m modifiers can be used to treat multi-line data as if it weranglsiline or multiple
lines, respectively. This affects the matching @nds , as well as whether or notwill match a
newline.

« The special variabless, $* and $ are always set when a successful match occurs.

+ $1,$2, $3 etc are set after a successful match to the text matched liysheecond, third, etc sets
of parentheses in the regular expression. These shouldenigedutsidethe regular expression
itself, as they will not be set until the match has been sisfukes

- Special non-capturing parentheges) can be used for grouping when you don’t wish to set
one of the numbered special variables.

- Special meta characters suchas\2 etc may be usedithin the regular expression itself, to refer
to text previously matched.

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and
process manipulation

In this chapter...

Perl is a popular tool for system administration as it makegtremely easy to call existing shell
scripts and tools to do your work.

In this chapter we will examine a number of ways that we cahesaérnal programs, and how we
can control their input and output.

Platform independence

A number of the methods we’ll cover below sacrifice portaéypiior utility. This is because a large
number of the system commands you may wish to call from yoogiams are different between
operating systems. To counter this, there are a wide nunili&rbfunctions and modules which
allow you to interact with the system in an operating systedependent function. We recommend
that you use these where possible.

Exit values

Experienced shell programmers are familiar with the ideanaxit valueor exit statusWhen a
command terminates, it can return an integer value to itsrggindicating success, failure, or other
states. Traditionally, a value of zero means success, aritiag else indicates failure. The
reasoning behind this is that there is often only one way tceed, but many ways to fail.

Later in this text we'll discuss how to capture the exit vatdi®@ther commands. However if you
want your Perl programs to interact nicely with your shetigs, then you'll almost certainly want
to use Perl’'exit function to indicate success or value:

exit(0); # Exit with a value of '0.
exit; # The default exit value is '0'.
exit(1); # Exit with a value of '1’

exit causes our program to halt immediately and exit with theifipdo/alue. Thexit function
shouldn’t be used if there’s a chance that something elseun grogram may wish to catch and
interpret the error, for that the usedé is recommended instead.

Invoking shell commands using system

You can learn more about the system command by executing perldoc -f system

Perl Training Australia (http://perltraining.com.au/) 43

Chapter 7. System interaction, wrappers, and process nigatipn

44

If you're used to using the shell to execute commands or rharctcripts, then you're almost
certainly eager to do the same thing in Perl. Doing so cotllumeasier, we just use thgstem
command:

system("echo Hello World"); # Use the shell to print a greeti ng

Perl always uses the standard shell on your operating system, regardless of what your own
preferences may be. That means that Perl will invoke /bin/sh -c ~ on Unix systems, command.com
on Windows 95 lineage systems, and cmd.exe /x/dic ~ on Windows NT lineage systems.

On Windows (only) the PERL5SHELLenvironment variable can be set to determine which shell is
used.

Commands entered into system work the same as if you hacedritesm on the command line:

Search for errors in syslog
system("tail /var/log/syslog | grep -i ERROR");

Use notepad to edit a file
system("notepad example.txt");

Thesystem command will execute the command (or commands) specifietiait for them to
finish before returning execution to Perl. The commandsshidire their standard input, standard
output, and standard error with Perl.

Multiple argument system

Where possible it is generally better to use the multiptptarent version ofystem . This version
assumes its first argument is the system command and th&heisare arguments to that command.
These arguments are treated literally (not passed via #15 ahd are therefore less open to security
issues.

When supplied with multiple argumentgstem will completely bypass the shell. This is faster, and
can avoid unintentional interpretation of shell meta-eletars:

Run ’'cat’ on a file named ’ *.txt’. By avoiding the shell there
is no interpretation of shell meta-characters

system(’cat’, ’ * . txt);

Run ’cat’ on all files ending in "txt', but avoiding the she I.
This uses Perl's built-in glob() function:

system(’cat’, glob(’ * . txt'));

Run ’cat’ on a list of files, each name will be interpreted
literally.

system('cat’, @filenames);

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process migatipn

Problems with system

Of course, there are problems that you can encounter wheg gysiem . To begin with, your
command might fail, either by not starting at all, or by reiag some sort of error status in its exit
value.

After executing asystem command, Perl sets a few special variables. Fheariable packs up the
exit value of the process, as well as information on wheth&as killed by a signal, and if it
dumped core.

There are a few special values for . If it's equaltq then your process never even started, and the
reason for this will be in the special variatsle. If it's equal to zero, then your process ran to
completion and exited with a zero exit status, which usuakans it thought it was successful.

If $2 is anything else, you have to do use a number of bit-maskiddérshifting operations to
extract the required values:

system("some_command");

if ($? == -1) {
print "Couldn’t run some_command - $\n";
} elsif ($? == 0) {
print "some_command ran successfully\n;
} else {
print "Exit value is ", $? >> 8, "\n"
print "Signal number is ", $? & 127, "\n";
print "Dumped core\n" if $? & 128;
}

Perl also has a few macros that can make dealing with systeiereBhese are both easier to
understand than the bit-masking operations, and morelgerta
use POSIX qw(WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG)
system("some_command");
if (WIFEXITED($?)) {

print "Command terminated normally with exit value "

WEXITSTATUS($?),"\n";

} elsif (WIFSIGNALED($?)) {

print "Command killed by signal ", WTERMSIG($?),"\n";
} else {

print "Command did not run, or terminated abnormally.\n";

}

Of course, having to do all that error checking every time gallito the shell gets very bothersome.
Luckily, there’s an easier way.

IPC::System::Simple and autodie

Both thelPC::System::Simple module (available from the CPAN) andtodie can take the hard
work out of checking the return value from system commands:

use IPC::System::Simple qw(system);
system("some_command");

With IPC::System::Simple enabled, theystem function will execute the command provided and
check the result. If the command fails to start, dies frongaai, dumps core, or returns a non-zero

Perl Training Australia (http://perltraining.com.au/) 45

Chapter 7. System interaction, wrappers, and process nudatipn

46

exit status, therPc::System::Simple will throw an exception with detailed diagnostics. Unless
you take steps to prevent it, a failure from this command eélise your program to die with an
error. If you want to capture the error, you can do so:

The ’eval’ block allows us to capture errors, which

are then placed in $@. If any of the commands below
fail, the 'eval' is exited immediately. This means if

we fail to backup the files, we won't delete them.

eval {
system(’backup_files’);
system('delete_files’);
h
if ($@) {
warn "Error in running commands: $@\n";
}

Theautodie pragma usesC::System::Simple underneath to provide the same changesdem
but with lexical scope (until the end of the current blocle fibr eval). The same code as above could
be written as:

eval {
use autodie qw(system);
system(’backup_files’);
system('delete_files’);
h
if ($@) {
warn "Error in running commands: $@\n";
}

When using either module, it's possible to specify a rangacoeptable return values as a first
argument.

use IPC::System::Simple qw(system);

Run a command, insisting it return 0, 1 or 2:
system([0,1,2], "some_command");

Run a command and capture its exit value:
my $exit_value = system([0,1,2], 'some_command’);

Specify return values using the range operator:
my $exit_value = system([0..2], 'some_command’);

Just like regulagystem , therun command uses the standard shell when running a single codhman
or invokes the command directly when called in a multipleuangnt fashion:

Run ’'cat *.txt' via the shell.
system(’cat * . txt);

Run ’cat’ on the file called ’ *.txt’, bypassing the shell.
system('cat’,’ * . txt);

Run ’cat’ on all files matching ’ *.txt', bypassing the
shell.

system('cat’,glob(’ * . txt)));

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process migatipn

ThelPC::System::Simple module also providessystemx() command for running commands, but
which neverinvokes the shell, even when called with a single argument.

You can read more about IPC::System::Simple at

http://search.cpan.org/perldoc?IPC::System::Simple and autodie ~ at
http://search.cpan.org/perldoc?autodie.

Capturing a program’s output

system is great for calling processes which either don’t generatput, or which send their output

to files. But what if you want to run a command that normallysito STDOUT? Running it with
system Will work, but if you want to capture that output you'll have tedirect it to a file, and then
open that file.... It's a lot of unnecessary hard work. Faaitaty Perl gives us a few other methods of
grabbing an external program’s output.

backticks/gx

Just like backticks imash or sh, backticks in Perl can be used to execute an external pracess
capture its output:

my $result = ‘finger pjf;
my S$result2 = qgx{finger $name};

gx{} is an alternative to using backticks. It has the same effeittis easier to identify when using
fonts which represent forward and backticks similarly.

In a scalar context (as above) the whole return result willdberned as a string with embedded
newlines. In a list context you will receive a list with onediof output per element.

my $directory = gx{dir}; # 'dir in a single string.
my @dir_lines = qw{dir}; # One line per element.

Backticksalwaysinvoke the shell, so be careful of unwanted shell meta-ctars.

Piped open

Just as we can uspen for opening files for reading and writing, we can also oige for opening
processes. After all, there is much similarity betweentprinto a filehandle, and sending data to a
process, or reading from a filehandle and reading data froro@eps.

open (my $ssh, "ssh $host cat $file |") or die "Can't open pipe M
while(<$ssh>) {

We can process the file in any way we like here.

In this particular case, we’ll simply print it to

our STDOUT.

print;

Perl Training Australia (http://perltraining.com.au/) a7

Chapter 7. System interaction, wrappers, and process nigatipn

exec

48

close $ssh or die "Failed to close: $! $?";

In the above example, our filehandksh provides us input from the process.

When opening a process for writing, we need to set up a hatwtetch any SIGPIPEs. These
might be generated if we try to write to a pipe which has clogadexample if we opened a process
that doesn’t exist. We do this by adding subroutine refezd¢acthe speciaksichash.

Set up a handler in case our pipe breaks, the process doesn't
exist, or other error occurs.

local $SIG{PIPE} = sub { die "Pipe broke." };

Open process to pipe to
open(my $out, "| $processl”) or die $;

print {$out} "Some text";

close $out or die "Failed to close: $! $?";

It is important to be aware that the command provided may gaha shell. Thus it is essential to be
certain that any variables or data do not contain any unegdetell meta-characters.

This construct cannot be used for both piping into and outpgroeess. For tips on how to achieve
that reacperldoc perlipc andio::Pipe

Multi-arg open

To avoid passing the process command via the shell, it islgless use a multiple argument version
of open just like we can withsystem andexec . Thus the above examples would become:

open (my $ssh, "-|", "ssh", $host, "cat", $file)
and
open(my $out, "|-", $processl) or die $I;

To pass execution over to an external program after martipglthe environment we can usgec .
exec Works very similarly tosystem with one key difference: code occurring in the file after thé c
to exec will only be executed if the call fails.

exec IS very useful if you're writing avrapperprogram, something which performs a series of tasks
before executing some larger process. For example, you riggytavensure that certain environment
variables are set before calling a given program. This dlsws you to have the exact same
program and wrapper on a number of machines but each usimg@pgie environment variables.

use Config::General;
my %config = ParseConfig("config.txt");

Set up environment variables for Oracle
SENV{TNS_ADMIN} = $config{tns_admin};
$ENV{ORACLE_HOME} = $config{oracle_home}
$ENV{LD_LIBRARY_PATH} = $config{ld_path};

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process migatipn

Run program which assumes environment is done
exec('my_oracle_application’);

Just as withsystem , exec has both a single argument and a multiple argument versitven/ou do
not intend shell meta-characters to be interpreted, thépresargument version is recommended for
both speed and safety.

Example - Tape backups

Being able to call out to the shell and make use of other prog@s components in our program,
gives Perl a lot of power. In the below example we write a bésit effective) program that uses the
system’sdump command to make backups to tape. If the fike/local/etc/fulldump is found

then a full dump is performed and the tape is ejected. Thigiges a simple mechanism so that other
processes (such as a script running on a web server) camiodiw our backup is performed.

The code below is optimised to be run from a scheduler suetvasthat will forward any script
output to an administrator. It forwards the output of thep command to STDOUT, and so ensures
that full dump reports are sent by mail each evening.

#!/usr/bin/perl -wT
use strict;

Clean our path
$SENV{PATH} = "/usr/local/sbin:/usr/sbin:/usr/bin";
$ENV{RSH} = "ssh";

These are the list of file systems we want to dump.
We can include extra options here; in our case
we specify the -L’ switch to add a tape label.

my @filesystems = (
-L boot /boot’,
-L database /mnt/database’,
-L home /mnt/home’,

)

If this files exists, we want a full dump.
use constant FULLDUMPFILE => "/usr/local/etc/fulldump";

Which program should be use for tape control?
use constant MT => '/bin/mt’;

Where is our dump command?
use constant DUMP => ’/shin/dump’;

Default dump level. -1 is incremental.
my $DEFAULT_LEVEL = "1%

If my full-dump file exists, then do a full dump instead.
if (-e FULLDUMPFILE) {
$DEFAULT_LEVEL = "-0%

}

@ARGV is our list of command line arguments. If we
don't get a dump level on the command line, we'll
use the default.

my $level = shift(@ARGV) || $DEFAULT_LEVEL;

Perl Training Australia (http://perltraining.com.au/) 49

Chapter 7. System interaction, wrappers, and process nigatipn

We expect our dump level to always be a minus, followed
by a single digit. This is a simple check to ensure that
it's not anything else.

($level) = $level =~ -(\d)$/;
defined($level) or die "No dump level available\n";

Dump each file system
foreach my $filesystem (@filesystems) {

system("$DUMP -$level $options 2>&1");
if ($?) { # Croak if there were problems.
die "\nErrors encountered! Entire dump halted.\n";

}

sleep 1;

If we had a full dump, clean up and eject the tape.
Otherwise we leave the tape in the drive.
if ($level eq "-0") {

system(MT, "offline");

unlink(FULLDUMPFILE);

print "Full dump successful. Tape ejected\n”;

Sending signals

50

Sometimes we want to send a signal to another process, yibeathuse we want it to terminate. We
can do this using Perligll function:

my $success = kill $signal, $process_id;
If the signal is zero then it simply checks that the given pasds alive, returning a true value if it is,
and a false value if not.

On Unix systemsill sends the specified signal to the process in question. Yousmaither the
signal name (without the leading 'SIG’) or its number. Sfigng a negative process_id sends the
signal to all processes within that group:

Both of these statements send a SIGHUP to the given
process.

kill "HUP’, $process_id,;
kill 1, $process_id;

Sends a SIGHUP to the given process and all other
members of its process-group (usually its children).

kill '"HUP’, -$process_id;

To get a list of signals available on a Unix system, use th# sbmmandkill -|

On a Windows systerill will terminate the given process, causing it to exit with @s$
identified by the first argument:

Windows-only, cause $process_id to exit with a value
of '42

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process migatipn
kill 42, $process_id;

Sending a value of zero to a process simply returns whethawtat's still alive, just like in Unix.

Chapter summary

This chapter covered how to call external programs and satadtd them, or receive data from
them. It also covered sending signals to other processeséi@ information on this material read
chapter 16 of the Perl Cookbook.

Perl Training Australia (http://perltraining.com.au/) 51

Chapter 7. System interaction, wrappers, and process nigatipn

52 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. The command line

In this chapter...

This chapter explores some of Perl's command line option$int out more about these read
perldoc perlrun

Once off scripts

Occasionally we find a task that only ever needs to be done @echaps we need to change a file so
that all stringsr002 becomesoos, or we want to find out how many times a particular IP address
accesses the web-server today. In these cases, rathestharthrow-away script, we may be able to
write our script directly onto the command line.

Keep in mind as you do this though, that sometimes throw-amgpts turn into programs that
become essential to the business. If you think you're elehylito run this same program again, or if
it is non-trivial, write it into a program, comment it, useist and warnings, as well as the
appropriate modules and keep it. You'll be glad you did.

Using the execute switch (-e) to convert from
epoch-time

Let's say that you've got a timestampseconds from the epoctine number of seconds since
midnight, 1st January, 1970 GMT. This time format is used byiaber of applications, and has the
advantage of being an absolute measurement of time thatépé@ndent of timezone or daylight
savings. It's also completely useless to most humans. Byuttethesquidproxy server records
times in seconds from the epoch.

We can use Perl to convert epoch-time to local time very gasild we can do so on the
command-line using Perlsxecute switche :

perl -e ’print scalar(localtime(1150946643)).qg{\n};

Under Perl 5.10, we can use the capitakbwitch to execute code, but turning on all the new 5.10
features first:

perl -E ’'say scalar localtime(1150946643)’

C When using the -e and -E switches, you need to be very careful of interactions with the shell.
Most Unix shells pass single-quoted strings to the application without alteration. DOS and
Windows shells, on the other hand, use double quotes for this purpose:

Unix, single-quotes
perl -e’print scalar(localtime(1150946643)).qa{\n};’

Windows, double-quotes
perl -e"print scalar(localtime(1150946643)).qg{\n};"

Perl Training Australia (http://perltraining.com.au/) 53

Chapter 8. The command line

In these notes we'll be using single-quotes when working on the command-line. If you're working
on a Windows system, then you’ll need to change these to double-quotes before trying any
examples.

Theqg{\n} represents a newline character, which you may more comnseelyvritten asn* . We
usescalar to forcelocaltime into ascalar contextWithout this, Perl would instead return us a
long list consisting of the year, month, time, hour, minsecond and so forth. Not exactly what
we're after.

When writing a script on the command line, ilvaysrecommended that you ug@ for single
guotes, andq{} for double quotes. This avoids any unwanted interactioh tié shell, and can also
make your code visually easier to read.

To perform multiple operations, just use semi-colons betwgour statements, in the same way that
you do in a program:

perl -e 'foreach(< *.txt>) { sl.txt$//; rename(qa{$_.txt},qa{$_-2006.txt}) ¥

This moves all files with axt extension to instead end withoo6.txt

Script-less programming

54

You may have a snippet of Perl that you wish to execute, parfram an e-mail or web page, but
which you don’t want to save as a permanent program. In thsat gau can invoke Perl and give it a
script on STDIN:

% perl

foreach(< *.txt>) {
s/.txt$ll;
rename("$_.txt","$_-2006.txt");

}

This will tell you of syntax errors immediately, but scriptezution will not start until you send Perl
anend-of-filecharacter, or more commonly knownesk On Unix systems this is done by hitting
CTRL-Dat the start of a line, and under Windows is done by hit@itRL-Zat the start of a line.

If your program accepts input from STDIN, you will need to yide its input after you've sent the
EOFcharacter and then seedFagain. In this case, you're almost certainly better off ingtyour
code into a file.

Printing switch (-p)

Using-p tells Perl to act as a stream editor. It will read input fronD8NI, or from files mentioned
on the command line, and place each line of input éntoThe body of your program is then
executed, and the contentspfare printed. It's most commonly used with Perl’s substitnti
operators/// , which is covered in the regular expressions chapters stinirse.

The following command line snippet can be used to correchancon spelling mistake in one of our
documents:

perl -pe ’s/freind/friend/g’ essay.txt > spellchecked-es say.txt

It's the same as writing:

Perl Training Australia (http://perltraining.com.au/)

Chapter 8. The command line

while(<>) {
s/freind/friend/g;
print;

}

As a more advanced example, the following snippet can betassshvertseconds from the epoch
time-stamps into human readable datessfjuidlogfiles:

perl -pe’s/A([\d.]+)/localtime($1)/e’ access.log

It works by finding a number at the start of each line (the titaep), and replacing it with the result
of callinglocalime on that timestamp.

Non-printing switch (-n)

perl -ne ’print if /perltraining\.com\.au/’

Using-n makes Perl act almost the samem@sHowever, theyrint line is excluded. This allows us
to write code like the above which only prints when we wanbitlt is equivalent to:

while(<>) {

print if /perltraining\.com\.au/;

}

Module switch (-M)

Perl has a great number of useful modules, and we may wistetthese on command-line
programs. We can load them quickly and easily usingthgwitch. The following example prints
what Perl can find in our environment usingra::Dumper

perl -MData::Dumper -e ’print Dumper(\%ENV);’
Multiple modules can be used by including multipleflags.
If you need to provide options to the module, you can do so lésife:

perl -Mautodie=open,close -e 'open(my $file, g{> /tmp/foo DR
print {$file} qg{12345\n};’

The above program will die with an error if thheen fails, even though we are not explicitly catching
this error. This is because of our use of thedie module. It is equivalent to:

use autodie gw(open close);
open(my $file, g{> /tmp/foo});
print {$file} qq{12345\n};

In-place switch (-i)

perl -i -pe ’s/freind/friend/’ file
perl -i.old -pe ’s/freind/friend/’ file

Perl Training Australia (http://perltraining.com.au/) 55

Chapter 8. The command line

Using-i on its own allows you to edit the file in place, overwriting thrgginal version. This can be
dangerous, as a bug in your program can result in data-lndsf gour program terminates
unexpectedly your file can be left in an inconsistent state.

A better solution is to provide an argument to the switchid . This creates a backup copy of the
original filefile.old and then overwrites the original.

This is equivalent to:

mv file file.old
perl -pe ’s/freind/friend/’ file.old > file

If your operating system or file-system does not allow an opened file to be removed, then you
must specify a backup extension when using -i . In particular, Windows systems always require
an extension.

If the backup file contains an asterisk, then it is replacet tie current filename. This allows you
to add agprefixinstead of a suffix if needed. For example:

perl -i’'badly_spelled__ *' -g's/freind/friend/" file

would create a backup calleddly_spelled_file . You can get fancy and place the asterisk in the
middle of the backup name, or even have multiple asterisksufprefer.

Autosplit switch (-a)

-a is Perl’s autosplit switch. When using autosplit (withor -p), Perl automatically does a split on
whitespace and assigns the result to@dwariable.

Let's say that we want to parse the outputsofi from a Unix system. It consists of a series of
lines in the following format:

-rw-r--r-- 1 pjf pjf 10201 Jul 17 13:52 command.pod

-rw-r--r-- 1 pjf pjf 17739 Jul 17 15:51 command.sgml

-rw-r--r-- 1 pjf pjf 1320760 Jul 18 14:57 sysadmin.ps
-rw-r--r-- 1 pjf pjf 2010 Jul 14 17:31 sysadmin.sgml

If we want to print all lines which have a file-size greatentliaViB we could use:
Is -l | perl -ane ’print if $F[4] > 1_000_000;

Note that Perl always counts fields starting from zero. Trevalzode run over our sample input
would display the single line :

-rw-r--r-- 1 pjf pjf 1320760 Jul 18 14:57 sysadmin.ps
The above Perl code is equivalent to:

while (<>) {
our @F = split(" ", $_, 0);

print if $F[4] > 1_000_000;

56 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. The command line

Note that the as a final argument tgplit means that empty fields are simply discarded; the effect
of this is that any sequence of space characters is condideseperator. You can also use the
switch can be used to specify an alternative pattern on wbisplit.

Parsing the results of Is -I to get file information is not a recommended way to gain
information about files. It's both slow and prone to error. A better way is to use Perl’s in-built stat
function, or the file test operators which are covered in the directories chapter of this course.

You could use an example similar to the above if you did not have direct access to the
filesystem, such as the output of Is -I stored in a file.

Other switches

Perl has many other switches. Below are some common ones.

Check switch (-c)

perl -c program.pl

-c causes Perl to check the program for syntactic errors anxittavighout executing the main body
of code. Code irBEGIN andCHECKblocks, as well asse lines will still be executed.

Warnings switch (-w)
perl -w program.pl

The-w switch runs your program with warnings turned on. Runnintihwiarnings helps catch
common mistakes, and is highly recommended.

Debugging switch (-d)

perl -d program.pl

Runs the program under the Perl debugger.

You can learn more about the Perl debugger by using perldoc perldebug

Include switch (-1)

perl -I/lhome/pjf/perl/lib/ program.pl

Perl Training Australia (http://perltraining.com.au/) 57

Chapter 8. The command line

Specifies which additional directories should be searcheshviooking for modules. This modifies
Perl’s special@INcvariable.

Taint switch (-T)
perl -T program.pl

Turns on taint mode. Any input from outside the program mestleaned before being used to
cause effects outside the program. For example data reckeam a user must be cleaned before
being passed as an argument to a system call.

We’'ll cover taint mode in more detail later in the course.

To learn more about Perl’s taint mode, read Perl Training Australia’s Perl Security course

manuals available at http://perltraining.com.au/courses/perisec.html and Perl’s security
documentation at perldoc perlsec

Chapter summary

Perl's command line interface makes it a great filter whesipgshe output of one program to
another with a little editing on the way. It also makes it efmsyus to perform basic tasks without
having to write a program for it.

58 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

In this chapter...

Many system administrators are familiar with shell-bagseds when it comes to filesystem
manipulation, and Perl makes it very easy to integrate witktiag shell commands. Unfortunately
calling out to the shell is comparatively slow, difficult teltlig, and can be operating-system
dependent. Luckily Perl comes with built-in functions fde$lystem manipulation, which are fast,
cross-platform, and provide better diagnostics. We’ll besring them in this chapter.

This chapter covers how to perform common filesystem opergaiin Perl. To find out more about
these functions reggkridoc -f function or where the function is provided by a moduietldoc
Modulename .

More information about writing cross-platform code can be found in peridoc perlport

Directory separators

Different operating systems have different directory safms. Unix systems use forward-slash (
DOS and Windows uses backslash, @nd MacOS 9 systems use a coloh (

Perl interprets a forward-slash as a directory separatbotmnUnix and Windowsystems, and we'll
be using forward-slash as the directory separator throughese notes. Using a forward-slash also
avoids any problems where Perl may interpret a backslashetacharactersuch as using "\n"

for a newline.

For code that is truly independent of filesystem considenatiwe’ll examine theile::Spec
module later in this chapter.

Working with files

Copying, moving and renaming files

One of the most common filesystem operations is that of cgpgirmoving files. Perl comes with
theFile:Copy module that provides a portable, cross-platform way to @mymove files.

use File::Copy;

Copy one filename to another.
copy($existing, $new) or die "Failed to copy: $!";

Copy the contents of a file to STDOUT.
copy($existing, \ *STDOUT) or die "Failed to copy: $!";

Move (rename) a file.
move($old_location, $new_location) or die "Failed to move BT

Perl Training Australia (http://perltraining.com.au/) 59

Chapter 9. Filesystem analysis and traversal

60

If you're copying from one filename to another, then under VI@S/2, Win32, and MacOS Classic
FilexCopy will attempt an attribute-preserving system copy.

Perl also has an in-built rename function, which is a thin wrapper around any system call
provided by the operating system:

rename($old_name, $new_name) or die "Failed to rename: $!"

Be aware that behaviour of this function varies significantly depending on the system
implementation. For example, it may not work across file system boundaries. In many cases
File::Copy 'S move function provides a more portable and reliable alternative.

For more information on copying files, see perldoc File::Copy

Deleting files
Perl has an in-built function callegiink for deleting files.

unlink $file or die "Failed to remove $file: $!";

unlink can be passed multiple files, and returns the number of filxsessfully deleted. It's
recommended that you delete files one at a time, so if a fadoes occur you knowvhichfile failed
to be deleted:

foreach my $filename (@list_of_files) {
unlink($filename) or warn "Could not remove $filename - $!"

}

unlink ~ will not delete directories, saedir later in these notes.

Some filesystems, particularly under VMS, keep multiplesianrs of files. Thus a portable method
to make sure all copies of a file are removed is to use:

1 while unlink "file";

Finding information about files

To find out information about files we can use the file-test afmes. These are similar to the ones
used by theash shell, and a full list can be found jperldoc -f -x.

if(-r $file) {

print "$file is readable.\n";
}
if(-e $file) {

print "$file exists.\n";

}

Perl also has stat function that returns a large amount of information on a filerece.

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

You should be mindful that while the file-test operators wilbvide you with information about each
file at the current time, this may change as your program isingn It would be foolish to assume
the size of a file is constant if you know it to be a logfile thabésng actively written.

Open the file only if...

Let's say that you wish to write a new file, but your programudtdaever overwrite an existing one.
You could write code that looks like this:

DANGER! This code contains a race condition, and
should not be used.

if (not -e $filename) {
open(my $fh, ">", $filename) or die "Can't open $file - $!"

}

However that code contains a problem. In between testingedf ®ur file exists, and opening the
file, another process may create a file with that name. Peit@pscause we're on a busy system, or
our program is running multiple times, or because someoimégationally trying to trick our system
into doing something it should not. In any case we run theafsidobbering an existing file. On a
filesystem that allows symbolic links, we may even clobbeesting file in an entirely different
location.

A much better way of opening files when we need careful coitriml use Perl'sysopen function:
use Fentl;

Open a NEW file for writing. This fails if the

file already exists, or is a symlink.

sysopen(my $fh, $filename, O_WRONLY|O_CREAT|O_EXCL)
or die "Failed to open S$outfile: $!";

The reasons for usirgysopen are twofold. Firstly, it's faster, we're performing one epgon
instead of two. The second, and more important reason, ti#tmuch more secure. The
O_CREAT|0_EXClflag combination tells Perl thatihustcreate a new file, it can’t open an existing
file for writing, nor may it chase a symlink. This means we dounh the risk of accidently
clobbering an existing file, even on a very active system.

You can learn more about race conditions and sysopen in Perl Training Australia’s Perl

Security course materials at http://perltraining.com.au/courses/perlsec.html .

Temporary files

Opening a temporary file is a very common operation. In lin ®ierl’s design of making "simple
jobs easy, hard jobs possible", opening a temporary filersgcin Perl is a very easy task.

In many situations, there’s no need to have a temporary file an actuahame If a file is
temporary, and is only to be manipulated by the current m®ead its children, then it's possible to
use that file without referring to the file system at all.

The lack of name has numerous advantages. The file is aut@ihatileaned up when the last
filehandle to it is closed. It's also possible to keep verfatticontrols on what can access that file, as
it's not accessible via the regular file system.

Perl Training Australia (http://perltraining.com.au/) 61

Chapter 9. Filesystem analysis and traversal

62

Creating an anonymous file in Perl version 5.8.0 and beyoadiéy simple operation usingen:

my $fh;
open($th,"+>",undef) or die "Could not open temp file - $!";

Using an undefined filename indicates to Perl that an anongtemoporary file is desired. This can
be written to and read from just like a normal file, however ydlineed to use theeek() function
to read the contents of the file once you've written to it.

You can also use thale:Temp module under any version of Perl to safely create temporiay. fi
use File:Temp gw(tempfile);
my $fh = tempfile() or die "Could not open temp file - $!";

print {$fh} "This is written to my tempfile\n";

TherFile:Temp module provides an excellent cross-platform interfacemorking with temporary
files, and contains a number of additional safety checksdarerthat files are created in a secure
fashion. Therile:Temp module also provides ways of securely creating temporagctiries, and
safely deleting temporary files.

File locking

Perl comes with a portable locking mechanism cafledk, which is short for file-lock. This allows
us to applyadvisorylocks to any filehandle.

use Fcntl qw(:flock);

flock($th, LOCK_EX) or die "Cannot get an exclusive lock: $!
or

flock($th, LOCK_SH) or die "Cannot get a shared lock: $!;

use our locked file
closing releases the lock

close $fh;

Perl’s flock mechanism can be used to lock any filehandleydicy sockets and streams liREDIN.
If the lock fails, or your operating system does not suppaoking on the requested filehandle, flock
will return false.

Locks in Perl aradvisory meaning that other processes can ignore them if they widlact, most
operating systems only have advisory locking of files, oy@ulpport mandatory locking in very
special cases. There are good reasons for this; on a Unersystandatory lock on the
letc/ipasswd file by a hung or malicious program could potentially prevaetess to the entire
system.

By default, flock will wait indefinitely until a lock is obtaad, however we can request a lock be
made in a non-blocking fashion by using the special constaci_NB

use Fcntl qw(:flock);
if(flock(FILE, LOCK_EX|LOCK_NB)) {

we got the lock
do something with it

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

While Perl allows us to unlock files by using theck_unconstant, its use is often a mistake.
Normally when we're finished with a file it is best to close &,tais automatically releases the lock,
and avoids any possibility of us accidently reading or wgtio an unlocked file. Under older
versions of perl unlocking a file did not always flush any otitpuffers, and this could result in
subtle errors as data would often be written to the (open dwtumlocked) file on program exit.

Locking your process

It's common to see external lock files being used to ensuteotfilg a single instance of a program is
running on a machine. This has the additional overhead atiagand tidying up the lock file.
Luckily for us, this is rarely needed in Perl.

We can take advantage of the fact that our program’s soude wil be stored in a file, and that file
must be accessible to the Perl interpreter in order for itito Rather than locking an external file, we
can simply lock our own source code, the filename of which eafobnd in the special variab$®.

use Fentl qw(:flock);
open(SELF,"<",$0) or die "Cannot open $0 - $!";

flock(SELF, LOCK_EX|LOCK_NB) or die "Already running.";

If this causes any problems, Perl programs also allow data siored at the end of their source
code, in a special DATA__section. If this exists, the data is accessible through eiapf@ehandle
called DATA. We can use this as an alternative method to lacloan program.

use Fcntl qw(:flock);
flock(DATA, LOCK_EX|LOCK_NB) or die "Already running.";
#o..

_ DATA__
Don’'t remove this data section!

This is a less optimal solution as tbaTAsection must be at the end of your code, and is therefore a
long way away from your locking code. If theDATA__section does not existock will fail with
our message@lready running rather than a warning thanTAadoesn’t exist.

File Permissions

Available file permissions are not consistent across ojgraystems. In Unix-based operating
systems, file permissions are represented as octal nuniksesds for execute, 2 for write, 4 for
read. These values are added to indicate multiple permissith the common values being 5 - read
and execute, 6 - read and write, 7 - read, write and execute.

These permissions are then applied to cover "owner", "drang "other" permissions. Thus a file
with permissions 06750 means that the owner can read, write and execute it, peofile same
group as the owner can read and execute it, but everyoneasdseotpermission to do anything.

This permission model is also used for Unix directories. dd something to a directory you need to
be able to write to it, to see a listing you need to be able td iteand to enter it at all you need to be
able to execute it.

Perl Training Australia (http://perltraining.com.au/) 63

Chapter 9. Filesystem analysis and traversal

64

Many of Perl’s file permissions functions assume this moble¢ various Unix/POSIX compatibility
layers attempt to map these to meaningful values for otherating systems, but sometimes there is
no good mapping. Regukrldoc perlport for information on your operating system.

@ When specifying permissions in Perl, it is important to do so in octal. Perl considers a number
to be an octal number if it starts with a zero, such as 0644 or 0755. Forgetting the leading zero
will have Perl interpret the number as decimal, and you will end up with very different
permissions than what you expect.

Changing permissions

chmod changes the permissions on a list of files. Be aware that Uk@xpermissions do not make
sense on all operating systems.

chmod 0775, $file_a or die "Failed to change permissions: $!

or a list:
chmod 0775, $file_b, $file_c;

Default permissions (umask)

Theumaskrepresents permission bits that aeverset when creating a file. Perlisask function
can be used to both get and set the umask used by the curreaspro

my $current = umask();

umask 0022;

Theumaskis applied to all files that are created. For example, thefdig code will create a new
file with permissions 0755:

use Fentl;
umask 0022;

sysopen(FILE, "runme", O_WRONLY|O_CREAT|O_EXCL, 0777);

If no umask is set in the file, then the process owner’s umallbbeiused. You shouldlwayshave a
good reason when setting tbenaskin your program, as this takes away the user’s choice imsgetti
their own.

Changing ownership

my ($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

chown $uid, $gid, $file;

The above snippet looks up a given username, to get their dtDGD from the password file. This
is then used to change the ownership and group ownershiplefta that user.

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

chown is not implemented on a number of operating systems, andvwelren it is you can rarely
change the owner of a file unless you're the superuser. Usesdiunction will reduce the portability
of your program. For more information reaetidoc perlport andperldoc -f chown

Links

For filesystems that support links, Perl has three functionnk manipulation.

To create a symbolic link in Perl, use thenlink function:
symlink $old_file, $new_file or die "Failed to create symli nk: $!";

To check that your system allows symlinks:
$symlinks_ok = eval { symlink(","™); 1 }

To create a hard link, use thex function:

link $old_file, $new_file or die "Failed to create link: $!"

To read the destination name of a symbolic link, used¢hdgink function:

my $linked_to = readlink $link;

Working with directories

Reading directories

There are two ways to read the contents of a directory in Befidir and its associateaddir
give you very fast access to all files including dot files. &#ee returned in "file-system order
which may not be sorted and only filenames (and not pathseawened.

opendir(HOMEDIR, $ENV{HOME}) or die "Failed to read $ENV{H OME}: $!";
my @files = readdir(HOMEDIR);
closedir(HOMEDIR);

Newer versions of Perl (5.6.1 and beyond) support opening
directory handles into scalars.

opendir(my $home, $ENV{HOME}) or die "Failed to read $ENV{H OME}: $!";
my @files = readdir($home);

closedir($home);

In either case, once we have our filenames, we can then proce SS
them. He we walk through each one and print the filename:

foreach my $file (@files) { print "$file\n"; }
Alternately, we can usglob .
my @files = glob(" *.txt"); # files ending with .txt

or less commonly:
my @files = < =*.txt>;

Perl Training Australia (http://perltraining.com.au/) 65

Chapter 9. Filesystem analysis and traversal

66

Glob is slower, returns the files in ascii-betical orderhiill path names and does not include dot
files (such asforward). On the other hand, readdir returns file names in file systelargwhich
may not be sorted).

Sub-directories are considered to be files.

Returning normal files

Often when we process a directory we want to skip over subetliries, we can do this with the file
operators from above.

opendir(my $home, $ENV{HOME}) or die "Failed to read $ENV{H OME}: $!";

foreach my $file (readdir($home)) {
next unless -f $file;

process file

Creating and removing directories

mkdir $new_dir or die "Failed to make $new_dir $!";
mkdir $new_dir, $mask or die "Failed to make $new_dir: $!";

rmdir $new_dir or die "Failed to remove $new_dir: $!";

Formkdir , if the mask is omitted it defaults wr77, with modifications fromumask if applicable.
rmdir will fail if the directory is not empty.

To create or remove a directory tree we can insteadriss®ath
use File::Path;

mkpath('shop/inventory/shelf’);

mkpath('shop/inventory/shelf’, 0, $mode);

rmtree('shopl/inventory/shelf’);

mkpath returns a list of all directories created upon success awsvihan exception on failure.
rmtree behaves like the Unikn -r command; deleting both files and directories in the tree.dJpo
success it returns the number of files deleted. Symlinks atréotiowed.

For more information abouttkpath andrmtree readperldoc File::Path

Directory paths

Different operating systems have different directory safms. This can make writing portable code
much harder. Fortunatehfle:Spec can be used to work with directories in an operating system
independent manner.

use File::Spec;

my $dir = File::Spec->catfile('shop’, 'inventory’, 'shel f, 'price.txt’);
print $dir;

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

Alternately split the path into parts.
my ($volume,$directories,$file) = File::Spec->splitpat h($dir);

The print will generate:

shop/inventory/shelf/price.txt

on Unix and Unix-like operating systems.

shop\inventory\shelf\price.txt

on Win32 operating systems.

shop:inventory:shelf:price.txt
on Mac OS 9.

Directory representations

Just as different operating systems have different sepratrahey also have different representations
for other common directoriesile::Spec makes many of these more manageable:

use File::Spec;

my $current_dir = File::Spec->curdir(); # ' on both Unix a nd Win32
my $updir = File::Spec->updir(); #)
my $root_dir = File::Spec->rootdir(); # '/" Unix, '\' Win32
my $null_device = File::Spec->devnull(); # /dev/null on Un ix
nul on Win32
my $tempdir = File::Spec->tmpdir(); # /tmp on both

Preventing path traversal attacks

A common issue with accepting file names from untrusted user#iding path traversal attacks.
For example consider the following:

$filename = "../../[../..letc/passwd"; # assume came from u ser

write to the file specified by the user
open(FILE, ">", $filename) or die "Failed to open file $file name: $!";

Oops! We might just have clobberegt/passwd ! Fortunately we can usdle:Spec to spot
attempts to climb up the directory structure in an operagysjem independent manner:

use File::Spec;

$filename = "../../../../etc/passwd"; # assume came from u ser
If we have an absolute path, then complain.

if(File::Spec->file_name_is_absolute($filename)) {

die "Absolute path not allowed";

}

If our path contains any "parent directory” elements,
then complain.

Perl Training Australia (http://perltraining.com.au/) 67

Chapter 9. Filesystem analysis and traversal

my $updir = File::Spec->updir();
if (grep {$_ eq $updir} File::Spec->splitdir($filename)) {
die "Parent directories not allowed in pathnames."

}

write to the file specified by the user
open(FILE, ">", $filename) or die "Failed to open file $file name: $!";

Changing directories

use File::Spec;
chdir(File::Spec->updir()) or die "Failed to change up a di ro$!"

Changes your program’s current working directory, if pbksiThis changes the working directory
for the rest of your program and for all processes your progray spawn. Be aware that this will
have no effect on your current working directory once yowgpam terminates.

Current working directory, absolute path for files

use Cwd;
my $pwd = getcwd();

use Cwd gw/abs_path/;
my $pwd = abs_path($file);

getewd returns the current working directory for your program wicafied.

abs_path returns the absolute path of the given file.

File::Find
It is possible to use Perlispendir andreaddir functions to recurse through directories; but it's not
easy or elegant. Fortunately there’s a module caliledrind ~ which replaces the need. This

emulates Unix’sind command but is portable across operating systéfasrind ~ comes
standard with typical Perl installs.

use File::Find;
my $YEAR = 365; # Days in year (good enough for this)
my $SIZE = 100_000; # 100k bytes

For each directory passed in on the command line
foreach my $dir (@QARGV) {

find (\&find_old_music, $dir);
}

All music which hasn't been accessed for a year, 100k+ in siz e
sub find_old_music {
if(/(\.(mp3|ogg)$/i and -A > $YEAR and -s > $SIZE) {
print "$File::Find::name\n";

}

68 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

Our\&find_old_music argument in our call tand is a subroutine reference. This subroutine will
be called for each filgile::Find finds (including directories and other special files). Whes t
find_old_music ~ subroutine gets called it has three variables set up:

$

Set to the name of the current file.
$File::Find::dir

Set to the current directory.
$File::Find::name

Full name of the file. Equivalent t&ile::Find::dir/$_

FilexFind automatically changes your current working directory ® shme as the file you are
currently examining.

File::Find::Rule
Some people find the call-back interfacerte::Find difficult to understand. Further, storing both

your rules and your actions in the call-back subroutine $imot of detail from someone glancing
over your code. As a result, an alternative exists catledrind::Rule

use File::Find::Rule;
my $YEAR_AGO = time() - 365 * 24 * 60 * 60; # Year ago in secs
my $SIZE = 100_000; # 100k bytes

my @old_music = File::Find::Rule->file()
->name (' *.mp3’, ' *.09Qg’)
->atime("< $YEAR_AGO")
->size ("> $SIZE")
>in (@ARGV);

Do something with @old_music files

atime actually returns the file access time in seconds since th#amsiary 1970. Thusatime("<
$YEAR_AGO")says that it was last accessed at a point that was earlienéttian a year ago was.

Chapter summary

This chapter covered portable methods to work with files arettbries with some attention paid to
portability issues. For more information about these sttbjplease read Chapter 7 of the Perl
Cookbook.

Perl Training Australia (http://perltraining.com.au/) 69

Chapter 9. Filesystem analysis and traversal

70 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Mail processing and filtering

In this chapter...

Email is an excellent method to send non-urgent informatiemy number of recipients. This
chapter deals with two common problems: how to send emaii fsoograms, to let us know how
things went, and how to deal with the already incredible amhofimail we currently receive.

Sending mail

A very easy module for sending emailngil::Send . By default it will search for your mail
executable and use the first it finds. You can change this lb@lvevy explicitly setting which mailer
you wish to use in the call tapen . Mail::Send is part ofMailTools

use Mail::Send;
my $msg = new Mail::Send;
my $time = localtime();

$msg->to('userl@example.com’, 'user2@example.com’);
$msg->cc('user3@example.com’);
$msg->bce('userd@example.com’);
$msg->subject("Webserver is down! ($time)");

my $fh = $msg->open; # use the default mailer on the system
print {$fh} "Web server response for page: $page was: $respo nse."
$th->close; # complete the message and send it

With attachments

Mail:Send ~ doesn’t handle attachments. For simple work with attacheygou may want to look at
MIME::Lite

use MIME:.Lite;

Create a new multi-part message:
$msg = MIME::Lite->new(

From => 'userl@example.com’,

To => 'user2@example.com’,

Cc => 'user3@example.com, userd@example.con’,
Type => 'multipart/mixed’

Subject => "Web server is down! ($time)",

):

Attachments

Text part
$msg->attach(
Type => "TEXT,
Data => "Web server response for page: $page "

"was: $response.” .
"See the attached image for recent load.",

Perl Training Australia (http://perltraining.com.au/) 71

Chapter 10. Mail processing and filtering

Attach Image.
$msg->attach(

Type => 'image/gif’,
Path => ’/var/www/data/load.gif’",
Filename => ’load.gif,

Disposition => 'attachment’

):

$msg->send;

Filtering mail

There’s a good chance you receive lots of e-mail. If you'rgsiean administrator with machines that
send you status reports, or the designated contact persarpfoject or business, then there’s a
chance that you'll receive a truly amazing amount of e-mail.

Managing all that e-mail can be hard. There are lots of smhgtthat can do basic operations, like
sorting into folders, but sometimes you’ll want to perforrona powerful operations. Maybe you
need to send an SMS when an important e-mail arrives. Mayba&ged to send different vacation
messages to your work colleagues than to your friends. Mggbevant to strip incoming files and
place them somewhere on the filesystem. Whatever you wantngay find that existing tools don’t
quite do the job.

Luckily for us, it's quite easy to allow Perl to control thelidery of e-mail.

Mail:: Audit

Simon Cozen's/ail::Audit module has a simple-to-use interface, understands a gesat m
mailbox formats, and possesses a surprising array of jpisig-i

Mail:Audit IS most commonly used as a mail-filter, with incoming mailnggielivered to a
program you've written instead of to your regular mailboxttWnany common Unix mailers you
can do that by putting the following in yourforward ~ file:

|~/bin/my-mail-filter
Although if you're usinggmail , you'll want to edit your.gmail file instead to add:
preline ~/bin/my-mail-filter

Setting a program as your local delivery agent depends upomail transport agent installed on
your system. It's alsstronglyrecommended that you test your program carefully beforbelamit.
Losing mail will ruin your day.

UsingMmail::Audit is easy. We start by loading the module, and creating annemaudit ~ object.
This automatically reads our mail (froeTDIN by default), and parses it:

#!/usr/bin/perl -w
use strict;

use Mail::Audit;

my $mail = Mail::Audit->new(emergency=>"~/emergency_mb ox");

72 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Mail processing and filtering

You'll note that we've specified aemergencynailbox. Should anything go horribly wrong,
Mail:Audit will write the message here. If this isn’t set theail:Audit ~ will try to hand the mail
back to your mail transport agent if things go wrong.

Once we've got aviail::Audit ~ 0bject, delivering our mail is easy:

Mail containing 'root’ in the from line goes into a
maildir folder. Note the trailing slash.

$mail->accept("~/Maildir/.root/") if $mail->from =~ Iro ot/i;

Mail with ’joke’ in the subject gets delivered to a ’jokes’
mbox file. Note the is NO trailing slash.

$mail->accept("~/Mail/jokes") if $mail->subject =~ /jok eli;

Everything else goes to our default mailbox:
Ivar/spool/mail/lusername

$mail->accept();

Mail:Audit understands bottmboxandMaildir mailboxes, and will try to auto-detect the format if
the file or directory exists on disk already. If auto-detaefiails, then it will default taviaildir if the
filename ends in a slash, amboxotherwise. It isstronglyrecommended that you always include
the trailing slash foMaildir delivery, even if you think the directory already exists.

In these notes we will assume that you are usitaildir directories, as they have rapidly grown in
popularity. Our examples can be easily modified to work withoxfiles just by omitting the trailing
slash in folder names.

Accepting and filtering mail

Callingaccept on a mail normally terminates your program. If you want toegatanail to multiple
locations at once, you can do so by passing all those loéismrguments t@cept .

The following example automatically saves all incoming Inreb Maildirs based upon the sender,
as well as to a central inbox.

#!/usr/bin/perl -w
use strict;

use Mail::Audit;
use Mail::Address;
use constant INBOX => "~/Maildir/";

my $mail = Mail::Audit->new(emergency=>"~/emergency_mb ox");

my $from_header = $mail->from;
my @senders = Mail::Address->parse($from_header);

This following line walks through all the senders mentione d
in the From header (almost always just one), extracts the

username (p.fenwick@perltraining.com.au would be just

'p.fenwick’.

H H O H

my @usernames = map { $_->user } @senders;

Perl Training Australia (http://perltraining.com.au/) 73

Chapter 10. Mail processing and filtering

We now adjust our senders to replace dots (which have
special meanings in Maildirs) with underscores (which do
not).

foreach (@usernames) {
s{\.H 3g;
}

Finally, we map those usernames into directories.
Our p.fenwick example would become ~/Maildir/.users.p_f enwick/

my @user_archives = map { INBOX. ".users.$_/" } @usernames;

If we've failed to extract any e-mail addresses from our Fro m
header, then @senders will be empty, and we’ll end up with an

empty @user_archives. In that case we’ll only be deliverin g
to the main mailbox.

$mail->accept(INBOX, @user_archives);

One of the most commonly used featuresqafi::Audit is the ability to separate incoming mail
into folders, particularly for mailing lists. We could do arist-by-list basis:

my $from = $mail->from;

if ($from =~ /melbourne-pm\@pm\.org/) {
$mail->accept(INBOX." lists.perl.melbourne-pm/");

} elsif ($from =~ /jobs\@perlh\.org/) {
$mail->accept(INBOX." lists.perl.jobs/");

} elsif ($from =~ /debian-security-announce/) {
$mail->accept(INBOX." lists.security/");

}

$mail->accept(INBOX);

If you're on a lot of mailing lists then you may find it more camnient for Perl to automatically
detect and sort your mailing lists for you:

use Mail::Audit;
use Mail::ListDetector;
use constant INBOX => "~/Maildir/";
my $mail = Mail::Audit->new(emergency=>"~/emergency_mb ox");
Let's see if we're dealing with a post to a mailing list...
my $list = Mail::ListDetector->new($mail);
if (list) {
It is a post to a listt Find its name...

my $list_name = $list->listname;

Replace dots with underscores ...
$list_name =~ s{\}{_}g;

And accept it to ~/Maildir/.lists.$list_name/
$mail->accept(INBOX." lists.$list_name/");
}

If it's not a list, then just throw it in the regular Mailbox.
$mail->accept(INBOX);

74 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Mail processing and filtering

Of course, we may want to do perform actions based upon thigngmést name, rather than blindly
save it to a folder. In any case, thil::ListDetector module can do all the hard work of
identifying the list for us.

Chapter summary

In this chapter we have only really scratched the surfaceioiguPerl for malil filtering. A wide
variety of modules exist for creating, editing, searchfiltgring, and processing email. The popular
spamassassisystem also exists as a Perl module.

More information and modules for Mail handling can be foundlee Comprehensive Perl Archive
Network (CPAN), at http://search.cpan.org/search?gkEmai

Perl Training Australia (http://perltraining.com.au/) 75

Chapter 10. Mail processing and filtering

76 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Security considerations

In this chapter...

Perl is a very powerful language which attempts to make alearything possible. This, of course
means that it makes it very easy to write large security hakesyour code. Fortunately, a little bit
of knowledge can make this much less likely.

In this chapter we cover potential security pitfalls and howvoid most of them. We also touch on
privileges under Perl.

This is not a complete coverage of Perl securityzor more comprehensive coverage of
programming securely in Perl refer to Perl Training Aus&’'alPerl Securitycourse notes (available
online at at http://perltraining.com.au/notes.html).

Potential security pitfalls

Most of us wouldn't give shell access on a secure machineyt@ardom person who asked. Neither
would we install code from an unknown party just on their egfuYet it's surprising how often
security is overlooked when writing code. Any time that agyeom accepts input from an unknown
party and does not verify that input before using it to affgmir system, it is inviting a security
violation.

Cleaning up after security violations can be a tremenddudfjonakes sense, therefore, to try to
avoid them. Being aware of the issues is the first step; kngpWwow to avoid most of them is the
second.

The biggest security pitfall in most programs (regardlddamguage) is best summed up as
unintended consequencé&onsider the following Perl code:

#!/usr/bin/perl -w

DON'T USE THIS CODE
use strict;

use CGl;

my $filename = CGI->param(file’);

open(FILE, "/home/test/$filename")
or die "Failed to open /homef/test/$filename for reading: $!

print out contents of requested file
print <FILE>;

In this code we have used the two-argument versiapef. Further, we haven’t specified a mode
for opening the file. Under normal circumstances, Perl vaiitane we meant to open this file for
reading. To many beginners, this code looks innocent. Yagine that we pass in the value:

.I..letc/passwd

Oops. We just printed out the contentsaé/passwd ! Now imagine that we pass in the value:

77
Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Security considerations

.J./bin/frm -rf /homeltest/ |

This tells Perl to execute the command on the left and pipetitgut to the given filehandle.
Printing out the contents adtc/passwd is bad, but executing arbitrary commands is a disaster.

This isn't rocket science. An average attacker can exgi@trnistake to see the contents of files they
shouldn’t, overwrite existing files and run system commakdsting code like the above is like
giving shell access to anyone who asks. And yet it's such awommistake.

Coding for security

Perl'sopen function isn’t the only place where you can go wrong. Any fiimic or operator that
passes input via the shell requires careful attention,mayt contairshell meta-characters
Assuming you can't just avoid all such functions and opestitie only way to ensure your code is
safe is tonever trust input from the user

Fortunately this isn’t too hard, and can be done without taeireffort. If we know what characters
a field is allowed to have, we can use a regular expression ke swxe that only these characters are
used:

#!/usr/bin/perl -w
use strict;
use CGl;

my $filename = CGI->param(‘file’);

unless ($filename =~ /A([\w.-]+)$/) {
die "Filename is not valid\n";

}
Filename is okay (only contains A-Z, a-z, 0-9, _, . and -)

open(FILE, "<", "/home/test/$filename")
or die "Failed to open /home/test/$filename for reading: $!

print out contents of requested file
print <FILE>;

It is always better to specify what is allowed, rather tharatvh not allowed. This is because it's
much easier to modify your expression to allow a few extraatiars if necessary, whereas it is
almost impossible to be sure that you've lisedbthe potentially bad characters.

However, even if we're careful, we can still make mistakesuliin’t it be nice if Perl could provide
some extra level of security to ensure that we don’t use stediinput by accident? It can, by using
taint mode

Taint checking

78

It's always important that we validate our input, and thipasticularly true if we're working in a
security sensitive context. Unfortunately it's easy ta@®trour validation steps, even if you are
programming defensively.

To help prevent this; Perl hasTaint mode Taint mode enforces the following rule:

Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Security considerations
You may not use data derived from outside your program tacafflemething else outside your program --
at least, not by accident.

Taint mode achieves its aim by marking all data that comes &grternal sources dsinted This
data will then be considered unsuitable for certain openati

- Executing system commands

- Modifying files

« Modifying directories

- Modifying processes

- Invoking any shell

- Performing a match in a regular expression usingthe. }) construct
- Executing code using string eval

Attempting to use tainted data for any of these operatiosigt®in an exception:

Insecure dependency in open while running with -T switclsécure.pl line 7.

Tainted data is communicable. Thus the result of any exjgressntaining tainted data is also
considered tainted.

Turning on taint

Taint mode automatically enabled when Perl detects thsatitining with differing real and effective
user or group ids -- which most commonly occurs when the piogs running setid.

Taint mode can also be explicitly turned on by using-thewitch on the shebang line or command
line.

#!/usr/bin/perl -wT # Taint mode is enabled

It's highly recommended that taint mode be enabled for anggam that's running on behalf of
someone else, such as a CGl script or a daemon that accepections from the outside world.
Once taint checks are enabled, they cannot be turned off.

Using taint checks is often a good idea even when we're nosecarity-sensitive context. This is
because it strongly encourages the good programming (@udity® practice of checking incoming
data before using it.

Untainting your data

The only way to clear the taint flag on your data is to use a caqguegular expression on it.
($clean_filename) = ($filename =~ /A([w.-]+)$);

it (not defined $clean_filename) {

die "Filename is not valid\n";

}

Filename is okay (only contains A-Z, a-z, _, . and -)

The contents of the special variables $2, (and so on) are also considered clean, busitangly
recommended that you use the list-capturing syntax showwmeadn , $2 can be set to

Perl Training Australia (http://perltraining.com.au/) 79

Chapter 11. Security considerations

indeterminate-yet-clean values if your regular expresfads, whereas a list-capturing syntax
guaranteesclean_filename will be undefined on failure.

Passing your data through a regular expression does nottimedtis safe to use. However it should
force you to think about it first. There’s nothing to stop yoorfi bulk-untainting data with an
expression like(. «)/is , but doing so is extremely trusting of your data, and celyaiot
recommended.

Dangerous environment variables

80

In addition to data our program receives while running, ve® &lave to be aware of environment
variables that can be set. Taint mode requires that eaclesé the either empty or untainted before
they may be used.

« PATH- the directories searched when finding external execigable

- IFS - Internal Field Separator; the characters used for woiittisgl after expansion.

« CDPATH a set of paths first searched &aywhen changing directory with a relative path.
« ENV- the location of a file containing commands to execute upefi Bivocation.

« BASH_ENV similar toENvbut only comes into effect when bash is started non-inteelygt(eg. to
run a shell script).

« PERL5SHELL(Windows only) - The shell that Perl will use to invoke wheitliog system
commands. This is only checked for taintedness in Perl Zugd%above.

Not all of these are used by all shells, but Perl will err ongfike of caution and check them all
regardless. If any are set, and we attempt to perform an tiperahich makes use of them, Perl will
throw an exception:

Insecure $ENV{ENV} while running with -T switch at insecure .pl line 4.

The best way to avoid encountering these errors is to set tradses yourself. For the most part this
means the start of your script will look similar to:

#!/usr/bin/perl -wT
use strict;

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};
$ENV{PATH} = "/usr/bin/:/usr/local/bin";

At the very least you should make sure that any script runimingint mode sets its OWSENV{PATH}.

PERLSLIB, PERLLIB, PERL5OPT

ThePERL5LIB andPERLLIB environment variables can be set to tell the perl interpretere to look
for Perl modules (before it looks in the standard library andent directory). These can be used
instead of includingse lib "path/to/modules" in your code.

ThePERL5OPTENVIFONMeENt variable can be set to tell the perl interpnetéch command-line
options to run with. These consist gbiMudmtw] switches.

These environment variables are silently ignored by Pedmthint checking is in effect.

Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Security considerations

Set-user-id Perl programs

suidperl , which allows Perl programs to run with elevated privilebas regularly been the cause of
security problems for Perl. In August 2000 a root shell eitplas discovered. This was
consequently fixed, however further security vulnerabdiare always possible.

suidperl is neither built or nor installed by default, and may be restbfrom later version of Perl.
It is recommended that you use dedicated, single-purpoesedach asudo instead ofuidper
where possible.

You can learn more about running setuid and setgid programs safely in Perl Training

Australia’s security notes that can be found at http://perltraining.com.au/courses/perlsec.html .

Chapter summary

This chapter covered using Pert&nt modeto help us ensure that we always validate input from
external sources. Taint mode does not trust any informétgm external sources and thus insists
that environment variables are cleaned before they are used

Perl Training Australia (http://perltraining.com.au/) 81

Chapter 11. Security considerations

82 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Logfile processing and
monitoring

In this chapter...

This chapter covers some of Perl’s modules which make wgnkiith log files easier.

Tailing files
Perl is often used to process log files, sometimes even wioketlog files are being written.
File: Tail makes this task easy.
use File:Tall;
my $file = File::Tail->new("/var/log/apache/access.log ");

while (defined(my $line = $file->read())) {
do something with the line

}

File:: Tail does its best to ensure that it does not "busy-wait" on a fidehhs little traffic. Further,
if the file does not change for some tinfge::Tail will check to make sure that it’s still there and
hasn’t beemolled-overto a new file. If this has occurred it will re-open the origified name for you.

Optional arguments

File::Tail can be given a number of arguments upon creation to changé peworms. Some of
these are listed below:

name

The name of the file to open.

interval

The initial time to wait between checks to see if new data e&nhbwritten to the file. The
default value is 10 seconds.

maxinterval

The maximum number of seconds that will be spend sleepingdaat checks to the file for new
input. Each timeile::Tail reads new data it counts the number of new lines and diviges th
by the time it just waited. This is used as the average timerbafew data is used as the
interval to wait, so long as this interval is not greater tharinterval . By default this is 60 (as

in File:Tail will never wait for more than 60 seconds to check the file).
adjustafter
The resistance to increasing the wait interval upwards.default is 10, sile::Tail will

wait for the current interval 10 times before adjusting thieival upwards.

Perl Training Australia (http://perltraining.com.au/) 83

Chapter 12. Logfile processing and monitoring

84

resetafter

The number of seconds after the last changeHiratrail should wait before checking to
see if the file has been closed and reopened. The defadjtsgfter « maxinterval

We use these arguments as follows:
use File:Tail;

my $file = File:Tail->new(
name => "Jvar/log/apache/access.log",
maxinterval => 60,
adjustafter => 10,

):

while (defined(my $line = $file->read())) {
print the line out
print $line;

}

In most cases, the defaults should work fine, so you shouldamtjust them ifFile:: Tail is not
responsive enough, or is causing undue load on your system.

File::Tail::App
File: Tail has one major limitation, if your program halts for some oeethere is no good way to

resume reading from where you got up to. If this is a requirgroéyour project you may want to
look atFile::Tail::App

use Unix::PID ’/var/run/logfile_app.pid’;
use File:Tail::App gw(tail_app);

tail_app({
new => [
name => ’/var/log/apache/access.log’,
interval => 1,

I

lastrun_file => ’logfile_app.lastrun’,
do_md5_check => 1,

line_handler => \&process_line,

D

sub process_line {
my ($line) = @_;
do something with the line

}

Unix:PID records our process’ PID in the given file, or exits with ameifrthe file already contains
the PID of a running process. This ensures our process igmriing twice, and makes it easier to
locate our long-running process if we need to stop or regtart

lastrun_file is a scratch-pad to which our process can record details efenits up to. This means
that if the process is terminated unexpectedly, it will bedb seek to the correct place in the log file
when it next runskile::Tail::App checks to see if the file has changed drastically since theitas
information written - such as being truncated - and startsebeginning if so.

do_mds_check records a MD5 sum on a small part of data at the beginning dilthéf this value
changes between invocations of your program, then file giieg will start at the beginning of the
file regardless of the value iastrun_file

Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Logfile processing and monitoring

line_handler is given a reference to the subroutine we wish to use to haadlk line, in this case
process_line . If this callback is not specified, theile:: Tail::App simply prints each line.

Exercises

Your instructor will tell you which file to use as your inputrfthese exercises.

1. UseFile::Tail to print out each line in the given file as it is generated. Yayind it useful
to setinterval => 1 for more responsive results.

2. Run your program. Notes will be printed to the file beford after it has been rotated. Make
sure thafile::Tail is correctly handling rotated files. An answer can be found in

exercises/answers/file_tail.pl

3. UseFile::Tail:App to print out each line in the given file as it is generated. Yan skip the
use Unix:PID line from the example; if you do use it, make sure you try taevio a file in
your own directory, and not ifar/run

Once you're happy that your program is working, stop it framming. Run it a second time and
check that it starts from where it left off.

Interesting data

A common task for a Perl program is to watch a logdfile for inséirey lines of data. These may be
warnings or errors, or just things entirely out of the oradynaou could be tempted to write a
program and specify what the interesting lines look likej s works very well if you're looking
for accesses to a particular file, or connections from a@adéei machine.

However in the more general case of showatlidghe "interesting" data that’s written to a file,
specifying regexps for that "interesting" data becomesenddficult. Let's take the example of a
program that watches the Undyslog file. If a line is written tosyslog that you've never ever seen
before, it's probably very interesting and unusual, bubifiiye never ever seen it before, your regexp
probably won't catch it.

A much better technique is to specify lines which boging. For example, the DNS daemon on
many systems will report about problems with other peosetsers. While this may be useful to
determine why a particular name is not resolving (or resgjgtrangely), it's not something we can
usually control or care about. We may ignore such lines with:

Regular expressions of boring data
my @boring = (
'named\[[0-9]+\]: bad referral’,

'named\[[0-9]+\]: ns_resp: query\(. *\) All possible A RR lame’,
'named\[[0-9]+\]: ns_resp: query\(. *\) No possible A RRs’,
'named\[[0-9]+\]: ns_forw: query\(. *\) All possible A RR’s lame’,
'named\[[0-9]+\]: sysquery: query\(. x\) All possible A RR’s lame’,
‘named\[[0-9]+\]: . *+ NS points to CNAME’,

'named\[[0-9]+\]: unrelated additional info . * type A from’,

)
Build one big regular expression to match all above

my $boring_re = "(?:". join(")|(?:", @boring). ")";
$boring_re = qr/$boring_relo;

Perl Training Australia (http://perltraining.com.au/) 85

Chapter 12. Logfile processing and monitoring

If we uselogcheck or a similar program which already has regular expressimusyer all the
boring cases we can just walk through those rather thandirgithem into our file:

my @boring;

Get regular expressions from logcheck
foreach my $file (glob("/etc/logcheck/ignore.d.paranoi d/ =") {

Skip files we can't read
open(RE, "<", $file) or next;

push @boring, <RE>;
}

Build one big regular expression to match all above

chomp @boring;

my $boring_re = "(2:". join("|(?:", grep({$_}, @boring)) B I
$boring_re = qr/$boring_re/;

Once we have a regular expression which can help us filteheuidring messages, we can then do
something useful with the rest:

use File:Tail;
my $file=File::Tail->new("/var/log/syslog");
while (defined(my $line = $file->read())) {

Skip if the line looks boring
next if $line =~ /$boring_re/o;

Do something useful here.
print $line;

}

This being Perl, we can do more useful things with the intergdines than just print them out. We
could e-mail them to an administrator (encrypted first, ifpvefer), announce them on an IRC
channel, or send them via instant message to whoever isngi®for monitoring our machine that
day.

Parsing Apache Lodfiles

Once we can tail a file, we may find it useful to parse the costdritere are a great many modules
on CPAN that allow us to parse logs of certain formats. A commxample is looking through
Apache log files, for which we can userse::AccessLogEntry

use File:Tail::App;
use Parse::AccessLogEntry;

my $parser = Parse::AccessLogEntry->new();
tail_app({
new => [
name => ’/var/log/apache/access.log’,
interval => b5,
1,
lastrun_file => ’logfile_app.lastrun’,
do_md5_check => 1,
line_handler => \&process_line,

86 Perl Training Australia (http://perltraining.com.au/)

sub process_line {
my ($line) = @_;

Chapter 12. Logfile processing and monitoring

my $contents = S$parser->parse($line);

print "Host: $contents->{host} “;
print "Date: $contents->{date} ";
print "File: $contents->{file} ";

Generating reports from logfiles with Logfile

TheLogfile

module can be used to generate simple reports for a varieliffefent web log types.

For example we can find out the top 5 most popular web pagesrasitedor the time period our log

covers with;:
use Logfile::Apache;

my $logfile = new Lodfile::Apache(

File => ’/var/log/apache/access-pta.log’,

Group => [qw(File)],
)

$logfile->report(
Group => "File",
Sort => "Records",
Top => 5,

)

which returns:

File Records
[tips/index 1659 17.70%

Ipta 851 9.08%
[favicon 617 6.58%
/images/logo 486 5.18%
/images/vcss 484 5.16%

As we have two index pages in otlps/

directory:index.html andindex.atom these have been

aggregated into the one record. We can also see what filesmastepopular by bytes downloaded

as well as their overall popularity:
use Logfile::Apache;

my $logfile = new Logfile::Apache(

File => ’/var/log/apache/access-pta.log’,

Group => [qw(File Bytes)],
)i

$logfile->report(
Group => "File",
List => [gw(Bytes Records)],
Sort => "Bytes",
Top => 5,
)

which returns:

Perl Training Australia (http://perltraining.com.au/) 87

Chapter 12. Logfile processing and monitoring

File Bytes Records
Inotes/progperl 72057469 26.35% 91 0.97%
/talks/optimisation 28316164 10.35% 15 0.16%
/notes/perloo 23956582 8.76% 62 0.66%
/notes/perldbi 22112175 8.09% 45 0.48%
/notes/sysadmin 21887840 8.00% 51 0.54%

The first and third to fifth of these are our course notes (POHgRvcan be downloaded from our
site.

Logging with Perl

When writing programs, it can often be useful to send stapaates to a log of some form. One
should always consider the method of program invocatiomah s case. For example, if your
program is going to be run as a daemon process, then it mafkes @ all information to go into a
log file. On the other hand, if your program is going to be ch#s an application by a user, then it’s
important to share that important information with the ugatentially as well as logging it) so that
the user has all the information they need about the progtat®. s

Really simple logging
The easiest way to write a log in Perl is to append to a file:

use 10::Handle;
use autodie;

Open file for appending, turn off buffering
open(my $log_fh, ">>", "my_app.log");
$log->autoflush(1);

print {$log_fh} "Interesting event happened here";

This is fine in most cases, but it will make your Ierydifficult if you want to change how logging
is done in the future, such as logging to a database ratheatfike.

A much better method is to write a subroutine for logging.sTikinot only easier to call, but gives
you the flexibiliy of updating a single routine to change hdlwyaur logging is done. The following
code provides a minmal example, which includes date-stanihe start of each line.

use 10::Handle;
use constant LOGFILE => ’/var/log/my_app.log’;

{
my $log_fh; # This variable is persistent, but only
accessible to the subroutine below.
sub mylog {
use autodie;

if (not $log_fh) {
open ($log_fh, '>>', LOGFILE);
$log_fh->autoflush(1);

88 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Logfile processing and monitoring

my $date = localtime();

print {$log_fh} "[$date] @_\n";

}
In Perl 5.10, thetate andsay keywords are available, which makes this even easier:

use 10::Handle;
use constant LOGFILE => ’/var/log/my_app.log’;

sub mylog {
use autodie;
use feature qw(say state);

state $log_fh; # State variables are persistent

if (not $log_fh) {
open ($log_fh, '>>, LOGFILE);
$log_fh->autoflush(1);

}

my $date = localtime();
say {$log_fh} "[$date] @_";
}

On systems with native appending support (which includestidaix systems writing to local
disks), these simple logging routines can be used withopsart of locking, provided that writes
remain small.

For more complex systems, it's recommended to use a prekbggling system, such asg4per!
(described below).

Log4perl

There are a whole range of more advanced logging optionsvemygopular heavy-weight option is
Log:Log4perl which implements Javalsg4j interface. This allows you to change the logging
behaviour of your application without restarting your codsaperl supports graduated logging
(error, warning, info, etc), and logging to differnet destions, including files, sockets, e-mail,
RRDtool, and user-defined interfaces.

You can learn more aboubg::Log4perl at http://search.cpan.org/perldoc?Log::Log4perl asd al
in the perl.com article atttp:/iwww.perl.com/pub/a/2002/09/11/log4perl.html

Logging to Syslog

If you are writing a system daemon, or similar tool, you magtwio add your log messages to your
system’s log. On Unix systems this is the syslog file oftemfibin /var/log/syslog . On Windows
systems this is the event log. Perl comes with a standard m¢alallow you to write messages to
the Unix SyslogsSys::Syslog

use Sys::Syslog;

Perl Training Australia (http://perltraining.com.au/) 89

Chapter 12. Logfile processing and monitoring

openlog("perl/messenger”, "perror, pid', LOG_USER);
syslog(LOG_INFO, "connect: Connection closed unexpected Iy");

This module is designed to provide a very similar interfasé C libraries. The first argument to
openlog is the program identifier, the second is a set of options far frohandle calls tayslog .

The final argument is the facilityoG_UsEeRn this case is for any generic user-level messages. If this
were a mail, cron or ntp error though, there are other fgailgtions for those.

syslog takes a priority for the message, and the message to priistniddule can also do a whole
lot more. Reagberldoc Sys::Syslog for more.

Chapter summary

+ File:Talil andFile::Tail::App provide a way to process changing files.

- Judicious use of regular expressions can allow us to avaltirdgewith boring data.

« We can usearse::AccessLogEntry to process Apache log files.

« Logfile allows us to get basic reports on log files.

- Asimple file-appender in a subroutine can provide a quiak-simple logging solution.
« Thelog:Log4perl module can provide very flexible and extensible logging.

« Thesys:Syslog module can be used to write to syslog.

920 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

In this chapter...

As well as handling the sending of email, Perl is a great toolforking with network services. Be
these instant messaging services such as IRC and AIM, using synthesis engines such as
festival, scraping web pages or talking to LDAP services| & do it. Perl can also do much,
much more. This chapter covers some of these ideas.

For a detailed discussion on network programming with Perl, consult perldoc perlipc

Sending data to IRC

Whether you're dealing with interesting lines from log filesicking changes on a wiki, or
monitoring a repository of source code, IRC bots are a poghiaice for reporting information. The
prevalence of instant messaging and the number of clienithwiow handle IRC makes an excellent
way to distribute information between a large number of siser

Perl’'sNet:IRC module can be used to connectto IRC, send and receive messageperform
other tasks. Here’s a simple example:

#!/usr/bin/perl -w
use strict;

use Net:IRC;
use constant CHANNEL => '#Syslog’;

Setup connection
my $irc = Net:IRC->new;
my $connection = $irc->newconn(
Nick => "ReportBot",
Server => "irc.example.com",
Ircname => "IRC Reporting Bot",
) or die "Can't connect";

Connect and report on status
$connection->join(CHANNEL) or die "Can't join";

$connection->privmsg(CHANNEL,"Tailing syslog messages ");

At this stage use $connection to report as required.
For example combined with syslog processing from Logfiles chapter

while (defined(my $line = $file->read())) {
The following line clears any pending messages for
the bot; in our case they're just ignored.
$connection->do_one_loop();

next if $line =~ /$boring_re/o;

$connection->privmsg(CHANNEL, $line);

91
Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

Event driven services
The above code includes the strange line:

$connection->do_one_loop();

This line tellsNet::IRC to process any waiting messages and events, and is essefataid us
gueueing up data on our IRC connection that never gets héaritifeessential for programs such as
ours whereNet:IRC isn’t the main loop, bukile::Tail is.

In our simple example we take the default action on all evénitéch is usually to ignore them), but
we could have code run when particular actions are notiagth(as a user entering the channel, or a
particular message being sent). We demonstrate some eesofmall-backs in our discussion on
AIM/ICQ below.

Sending an AOL instant message

92

IRC messages are great if the channel is quiet. However dhihanel gets busy important messages
could be missed. An alternative is to use something like AQhstant Messaging service (AIM) or
ICQ. Both of these use the OSCAR protocol, and we can useghesCAR module to interface

with this.

use strict;
use Net::OSCAR qw(:standard);
use File:Talil;

use constant USERNAME => "example"; # Bot username
use constant PASSWORD => "secret";
use constant SYSADMIN => "my_aim_username"; # Human userna me

my $file = File::Tail->new("/var/log/example.log");

my $oscar = Net::OSCAR->new();
my $logged_in = O;

Set some call-backs to make our lives easier
$oscar->set_callback_signon_done(sub { $logged in = 1 }) ;

$oscar->signon(
screenname => USERNAME,
password => PASSWORD,
) or die "Failed to connect";

A timeout of -1 means "wait forever" until events occur.

This means we’ll do the minimum amount of processing to
login.

$oscar->timeout(-1);

Wait until we're logged in.
while(not $logged_in) {
$oscar->do_one_loop();
}
Now reset our timeout to 0.01 seconds, so we don't
wait too long while reading our file.

$oscar->timeout(0.01);

Now that we're connected, we’'ll just copy lines
from our logfile to our remote user as we see them.

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

while (defined(my $line = $file->read())) {
$oscar->send_im(SYSADMIN, $line);
$oscar->do_one_loop();

Call-backs

In the above code we register a call-back with gascar object. Theset_callback_signon_done
method takes a reference to a subroutine as its argumenir example we've supplied an
anonymous subroutine that sets a flag, but we can also creefterance to a subroutine:

$oscar->set_callback_signon_done (\&signon_done);
then later ...

sub signon_done {
print “Logged in\n";
}

TheNet:0SCAR module allows for a wide variety of callbacks to be set, ontlimg from buddies
logging in and out, to messages and chat-invites beinguedei

Sending data to a speech engine

With the amount of visual data we have to deal with from dayag, dometimes it helps to use a
different channel to deal with really important informati@ther times, it's just easier to sit back
and listen to a report, than to read it yourself. In any casecam use th&peech::Synthesis

module to help fulfil your aims.

This module provides access to a number of engines: SAPIR|B&nd MSAgent (all Win32 only),
MacSpeech (OS X only) and Festival.

use Speech::Synthesis;
my $engine = 'Festival’;

my $ss = Speech::Synthesis->new(

engine => "Festival",
language => "en_AU",
voice => "rab_diphone",

)

$ss->speak("All your base are belong to us.");

Web browsing and scraping

Perl is all about making our lives easier, and a lot of thisiswa doing our work for us. Well,
wouldn'tit be great if there was a Perl module to do our welwsiag? It turns out that there is.
WWW::Mechanize .

WWW::Mechanize (or Mech, as it is commonly known) allows you to automateriat&on with
websites. It supports fetching pages, following links,mitbng forms, and much more.

Perl Training Australia (http://perltraining.com.au/) 93

Chapter 13. Interacting with network services

The following example goes to http://search.cpan.org/sertbrms a module search. It then locates
all the module links on the first page, and displays their reeamel URLS.

#!/usr/bin/perl -w

use strict;

use WWW::Mechanize;

Get our argument from the command line, or use
'Acme’ as a default

my $query = $ARGVI[O] || 'Acme’;
Create our Mechanize agent.
my $mech = WWW::Mechanize->new();
Get our page
$mech->get(http://search.cpan.org/’);
Find our query form (named f), fill it in, and submit
$mech->form_name(f);
$mech->field('query’, $query);
$mech->submit;
my @links = $mech->links;
All our modules end in a ".pm" or ".pod" extension.
my @module_links = grep { $_->url =~ A.(pm|pod)$/ } @links;
Walk though each of our links and print the text and url.
foreach my $link (@module_links) {
my $text = $link->text;
my $url = $link->url;
print "$text\n\tSurl\n\n";

}

When run with a command-line argumentafantum the following results are produced (truncated
for space):

Quantum::Random
/author/FOX/Quantum-Random-0.01/lib/Quantum/Random. pod

Acme::MetaSyntactic::quantum
/author/BOOK/Acme-MetaSyntactic-0.83/lib/Acme/MetaS yntactic/quantum.pm

Quantum::Entanglement
/author/AJGOUGH/Quantum-Entanglement-0.32/Entanglem ent.pm

Quantum::Superpositions
/author/LEMBARK/Quantum-Superpositions-2.02/lib/Qua ntum/Superpositions.pm

Thewww::Mechanize class provides a very rich interface, allowing one to seuseragent string,
handle cookies, and fill in forms.

You can learn more about www::Mechanize on http://search.cpan.org/ and searching for

WWW::Mechanize .

94 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

Working with LDAP

LDAP (Light-weight Directory Access Protocol) is the destiainternet directory standard. It allows
users to locate organisations, individuals and other messy(such as files and devices) from an
internet or intranet directory server. It is supported byngneompanies including Sun, Microsoft,
IBM and Novell.

Perl'sNet:LDAP module allows you to access an existing LDAP server throwegh R can be used
to search directories as well as add, delete and modifyesnffhis section assumes some knowledge
of the LDAP protocol.

Connecting
UsingNet:LDAP to connect to our LDAP server is just a matter of creating doject and binding.
use Net::LDAP;

my $ldap = Net::LDAP->new(
‘ldap.perltraining.com’,
onerror => ’die’,

)

$ldap->bind(
‘cn=root, o=Perl Training Australia, c=AU’,
password => $password,

Searching

To search for an entry we just create our search pattern @ndrsét’s always a good idea to check
whether our search was successful, as otherwise it may eftya@@ur search term is not available
when instead there was an error.

Perform search
my $results = $ldap->search(
filter => "(&(sn=Fenwick) (o=Perl Training Australia))",

):

Handle errors
if ($results->code) {
die $results->error;

}

Dump the contents of each entry returned
foreach my $result ($results->entries) {
$result->dump;

}

End session.
$ldap->unbind;

Perl Training Australia (http://perltraining.com.au/) 95

Chapter 13. Interacting with network services

Adding

To add an entry we can add in all the details in one go, or adaeimtere basics and then modify the
object.

my $result = $ldap->add(
‘cn=Paul Fenwick, o=Perl Training Australia, c=AU’,
attr => [
‘cn’ => ['Paul Fenwick’, 'Paull,
'sn’ => 'Fenwick’,
‘mail’ => ’contact@perltraining.com.au’,
‘objectclass’ => |

‘person’,

‘trainer’,

"author’,

I
1,

)
$ldap->unbind;
Modifying
Modifying entries is as easy and searching for the entry wet ¥eachange, and making those
changes.

First find the entry (gives us the DN)

my $results = $ldap->search(
filter => "(&(cn=Paul Fenwick) (o=Perl Training Australia)",
sizelimit => 1,

)

Handle errors
if ($results->code) {
die "Failed to add entry: ", $results->error;

}

If no error, then we should only have one result
Ask for the first entry.
my $entry= $results=>entry(0);

$ldap->modify(

$entry,
changes => [
add => [objectclass => 'director’],
replace => [mail => ‘pjf@perltraining.com.au’],

delete => [objectclass => ’author’],
)

$ldap->unbind;

96 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

Chapter summary

This chapter has covered connecting to an IRC server, sgdiv messages, sending information
through a voice synthesiser, searching CPAN for modulesyamking with LDAP. Perl is capable
of many more network services, and there are a great manylewaailable to help you achieve
your goals.

Perl Training Australia (http://perltraining.com.au/) 97

Chapter 13. Interacting with network services

98 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. Further Resources

Online Resources

- PerINet - The Australian Perl Portal - http://perl.net.au/

- The Perl Directory - http://perl.org/

- Comprehensive Perl Archive Network - http://search.cpayi.
- Perl Mongers user groups - http://pm.org/

« PerlMonks - http://perlmonks.org/

- O'Reilly’s Perl.com - http://perl.com/

Books

Perl Best PracticesDamian Conway, O’Reilly and Associates

Programming PetlLarry Wall et al, O’'Reilly and Associates

Perl for System Administratigibavid N. Blank-Edelman, O’Reilly and Associates
The Perl Cookboagktom Christiansen and Nathan Torkington, O’Reilly and Asates

Perl Training Australia (http://perltraining.com.au/)

99

Chapter 14. Further Resources

100 Perl Training Australia (http://perltraining.com.au/)

I n d eX arrays, element lookug,1

arrays, finding last index,1
arrays, length of12
autodie,22, 45, 55

Sym bo's autosplit switch56
1~,25
", 10 B
#,9
#,7 backreferencegil
$!, 45 backticks 47
$&, 40 binding operator25
$, 40 boolean operatord5
$/,19 38
$0,63
$1,33,40
$?,45 C
$_.13 changing directorie$8
$,40 chdir, 68
%ENV, 14 check switch57
<>,16 chmod,64
', 10 chown,64
-a,56 comments9
-C, 57 comments, in regular expressioBd,
-d, 57 comparison operatord4
-€,53 conditionals .14
-i, 55, 57 copying files 59
-M, 55 Cp’59
-n, 55 CPAN, 20
-p, 54 CPAN shell,21
-T, 58 curdir, 67
-w, 57 current working directory68
-X, 60 cwd, 68
/m, 39
/s,39
=~,25 D
@ARGV, 13
@INC, 57 debugging switch57
__DATA__,63 deleting files 60
L 47 devnull, 67
die, autodie22
die, vs exit43
A directories, changind8
directories, creatingg6
absolute path68 directories, curren8
abs_path68 directories, path©6
advisory locks62 directories, recursindg9
AlM, 92 directories, removings6
arrays,10 directories, separator§6
arrays, interpolatiorl.2 directories, recursing8
arrays, counting backwardsl directories, separators9

101
Perl Training Australia (http://perltraining.com.au/)

102

double-quotes]10
dump,49

else, 15

elsif, 15

End of file,54
environment variableg0
EOF,54
epoch,53

exec,48
execute-switch53
exit, 43

exit value,45

exit values43
exit, vs die 43

extended regular expressiod,

false,14

Fentl, 61, 62

file locking, 62

file test operator0
File::Copy,59
File::Find,68
File::Find::Rule 69
File::Path 66
File::Spec66
File::Tail, 83
File::Tail::App, 84
File::Temp,62
filehandles, scalaf,9
files, deleting60
files, locking,62
files, temporary61
files, unlocking,63
files, permissions63
files, absolute pattg8

files, changing ownershi4

files, finding attributesG0
files, normal filesp6
files, opening18

files, opening securely,7, 78

file_name_is_absolutéy7
find, 68, 69

flock, 62

foreach,17

fortune,37

glob, 65
greediness35s

hard link,65
hash, lookups12
hash, sizel3
hashes12
help,7

if, 15

if, trailing, 16

in-place editingb5
include switch57

input validation,78, 78
input record separatot9
input record separatad8
interpolation,10
IPC::System::Simple45
IRC, 91, 92

kill, 50

LDAP, 95

link, 65

local, and $/20
localtime,53

locking, unlocking 63
locking, file,62

locking, own proces$3
Log4perl,89

loops, while,16
loops,foreachl7

Perl Training Australia (http://perltraining.com.au/)

m//, 23

malil filtering, 72

malil filtering, by list,74

malil filtering, by sender73

mail, sending71

mail, sending with attachmentzl
Mail::Address, 73

Mail::Audit, 72
Mail::ListDetector,74
Mail::Send,71

man,7

matching operatof3
meta-character86
meta-characters, regular expressi2f,
MIME::Lite, 71

mkdir, 66

module switch55

modules, installing20

moving files,59

mv, 59

Net::IRC,91
Net::LDAP, 95
Net::OSCAR 92
non-printing switch55

open,18

open, for readingl9
open, for writing,20
open, handing errorg2
open, scalar filehandle$9
opendir,65

opening files, race condition§1
operators, booleari5
operators, comparisof4
OSCAR,92

O_EXCL,61

parsing, Is -135
path traversal attack&y

Perl Training Australia (http://perltraining.com.au/)

perldoc,7

portability guidelines59

portability, directory representatio67
portability, directory separatoréf
portability, directory separator§9
POSIX,45

PPM,21

printing switch,54

pwd, 68

q,54

qq,54

quantifiers 27

quotes 10

quotes, avoiding shell interactiod3
guotes, on command-lin&3

gx, 47

race conditions61

readdir,65

readlink,65

recursing through directorie69
recursing through directorie68
regular expression alternatio?9
regular expression capturing3

regular expression character clasgss,
regular expression meta-charact@s,36
regular expression quantifie®
regular expressiong3

regular expressions, $9

regular expressions, backreferenatk,
regular expressions, extendéd,
regular expressions, greediness,
regular expressions, 39

renamep0

rmdir, 66

rootdir, 67

run, 45

103

104

slll, 24

scalar filehandles,9
scalars9

security,58, 77

security, allowing charactergg
security, common problemgy
security, input validation78
security, taint,78
set-uid,81

shebangy

shell,43

shell, capturing outpug?7
signals, sendindh0
single-quotes10

special variablesl3
Speech::Synthesi93
split, command line56
starting your progran®
stream editor54

strict, 8, 8

sub,17

subroutines17
substitution operato4
suidperl,81

symbolic link,65
symbolic link, reading65
symlink, 65

symlinks, avoiding61
sysopenfl

system43

system, multi-argumeng4

tail, 83, 84

taint, 78

taint switch,58

taint, untainting,79

taint, environment variable80
taint, unsafe operation8y
tape,49

tempfile,62

temporary filesg1

tmpdir, 67

true,14

truth, 14

types,9

umask,64
Unix::PID, 84
unless 15

unless, trailing16
unlink, 60
untainting data79
updir, 67

use warnings8
use strict8, 8

use warnings8

variables, arraysl0
variables, hasheg?
variables, scalar§

variables, speciall3
variables, namingd

warnings,8, 8

warnings switch57
WEXITSTATUS, 45

while, 16

WIFEXITED, 45

working with multi-line strings37
WWW::Mechanize93

Perl Training Australia (http://perltraining.com.au/)

