
Perl for System
Administration

Jacinta Richardson
Paul Fenwick

Perl for System Administration
by Jacinta Richardson and Paul Fenwick

Copyright © 2006-2008 Jacinta Richardson (jarich@perltraining.com.au)
Copyright © 2006-2008 Paul Fenwick (pjf@perltraining.com.au)
Copyright © 2006-2008 Perl Training Australia (http://perltraining.com.au)

Conventions used throughout this text are based upon the conventions used in the Netizen training manuals by Kirrily Robert, and found at

http://sourceforge.net/projects/spork

Distribution of this work is prohibited unless prior permission is obtained from the copyright holder.

This training manual is maintained by Perl Training Australia, and can be found at http://www.perltraining.com.au/notes.html.

This is revision 1.2 of Perl Training Australia’s "Perl for System Administrators" training manual.

Table of Contents
1. About Perl Training Australia ...1

Training...1
Consulting...1
Contact us..1

2. Introduction ...3

Course outline...3
Assumed knowledge...3
Module objectives...3
Platform and version details..3
The course notes..4
Other materials..4

3. Why use Perl for System Administration?...5

4. Perl Basics..7

In this chapter..7
Important basics..7

Help...7
Shebang line..7
Strictures and warnings...7

Strict...8
Warnings..8

Comments..8
Starting your program..9

Variables..9
Scalars..9

Quotes and interpolation..10
Arrays..10

Array lookups...11
Changing array elements..11
Adding array elements...11
Counting backwards...11
Last index...11
Array length...11
Interpolation...12

Hashes..12
Hash lookups..12
Changing hash values..12
Adding hash pairs..13
Hash size..13
Interpolation...13

Special Variables...13
$_..13
@ARGV ..13
%ENV..13

Conditionals and truth...14
Comparison operators..14
Boolean operators..15
if-elsif-else...15

unless..15

Perl Training Australia (http://perltraining.com.au/) iii

Trailing conditionals..15
Looping constructs..16

while ..16
foreach...16

Subroutines..17
File I/O..18

Reading..19
Changing the input record separator..19

Writing...20
CPAN..20
autodie...21
Chapter summary..22

5. Regular expressions..23

In this chapter..23
What are regular expressions?...23
Regular expression operators and functions..23

m/PATTERN/ - the match operator...23
s/PATTERN/REPLACEMENT/ - the substitution operator..24

Exercises..24
Binding operators..25
Easy modifiers...25

Meta characters...25
Some easy meta characters..25
Quantifiers...27
Exercises..27

Grouping techniques...28
Character classes...28

Exercises..29
Alternation...29
The concept of atoms...30

Exercises...30
Chapter summary..31

6. Advanced regular expressions...33

In this chapter..33
Assumed knowledge...33
Capturing matched strings to scalars..33
Extended regular expressions..34

Exercise...35
Advanced exercise...35

Greediness...35
Exercise...36

More meta characters..36
Working with multi-line strings..37

Exercise...39
Regexp modifiers for multi-line data...39

Back references...40
Special variables..40
Exercises..41
Advanced exercises...42

Chapter summary..42

iv Perl Training Australia (http://perltraining.com.au/)

7. System interaction, wrappers, and process manipulation..43

In this chapter..43
Platform independence..43
Exit values...43
Invoking shell commands using system..43

Multiple argument system...44
Problems with system..44
IPC::System::Simple and autodie..45

Capturing a program’s output...47
backticks/qx...47
Piped open...47
Multi-arg open...48

exec...48
Example - Tape backups...49
Sending signals...50
Chapter summary..51

8. The command line...53

In this chapter..53
Once off scripts...53
Using the execute switch (-e) to convert from epoch-time...53
Script-less programming...54

Printing switch (-p)..54
Non-printing switch (-n)..55
Module switch (-M)...55
In-place switch (-i)..55
Autosplit switch (-a)..56

Other switches...57
Check switch (-c)...57
Warnings switch (-w)...57
Debugging switch (-d)...57
Include switch (-I)...57
Taint switch (-T)..58

Chapter summary..58

9. Filesystem analysis and traversal..59

In this chapter..59
Directory separators..59
Working with files...59

Copying, moving and renaming files...59
Deleting files..60
Finding information about files...60

Open the file only if...61
Temporary files..61
File locking..62

Locking your process...63
File Permissions..63

Changing permissions...64
Default permissions (umask)...64
Changing ownership..64
Links..65

Working with directories...65
Reading directories..65

Perl Training Australia (http://perltraining.com.au/) v

Returning normal files..66
Creating and removing directories..66
Directory paths..66

Directory representations...67
Preventing path traversal attacks..67

Changing directories..68
Current working directory, absolute path for files...68

File::Find...68
File::Find::Rule..69

Chapter summary..69

10. Mail processing and filtering...71

In this chapter..71
Sending mail...71

With attachments...71
Filtering mail...72

Mail::Audit ..72
Accepting and filtering mail...73

Chapter summary..75

11. Security considerations..77

In this chapter..77
Potential security pitfalls...77
Coding for security..78
Taint checking...78

Turning on taint...79
Untainting your data..79

Dangerous environment variables...80
PERL5LIB, PERLLIB, PERL5OPT...80

Set-user-id Perl programs..80
Chapter summary..81

12. Logfile processing and monitoring..83

In this chapter..83
Tailing files..83

Optional arguments..83
File::Tail::App...84
Exercises..85

Interesting data..85
Parsing Apache Logfiles...86
Generating reports from logfiles with Logfile...87
Logging with Perl..88

Really simple logging..88
Log4perl..89
Logging to Syslog..89

Chapter summary..90

13. Interacting with network services...91

In this chapter..91
Sending data to IRC..91

Event driven services...91
Sending an AOL instant message..92

Call-backs..93
Sending data to a speech engine...93

vi Perl Training Australia (http://perltraining.com.au/)

Web browsing and scraping..93
Working with LDAP...95

Connecting...95
Searching...95
Adding...95
Modifying..96

Chapter summary..96

14. Further Resources..99

Online Resources..99
Books..99

Index...101

Perl Training Australia (http://perltraining.com.au/) vii

viii Perl Training Australia (http://perltraining.com.au/)

List of Tables
1-1. Perl Training Australia’s contact details..1
5-1. Binding operators..25
5-2. Regexp modifiers...25
5-3. Regular expression meta characters..26
5-4. Regular expression quantifiers..27
6-1. More meta characters..36
6-2. Effects of single and multi-line options...40

Perl Training Australia (http://perltraining.com.au/) ix

x Perl Training Australia (http://perltraining.com.au/)

Chapter 1. About Perl Training Australia

Training
Perl Training Australia (http://www.perltraining.com.au) offers quality training in all aspects of the
Perl programming language. We operate throughout Australia and the Asia-Pacific region. Our
trainers are active Perl developers who take a personal interest in Perl’s growth and improvement.
Our trainers can regularly be found frequenting online communities such as Perl Monks
(http://www.perlmonks.org/) and answering questions andproviding feedback for Perl users of all
experience levels.

Our primary trainer, Paul Fenwick, is a leading Perl expert in Australia and believes in making Perl a
fun language to learn and use. Paul Fenwick has been working with Perl for over 10 years, and is an
active developer who has written articles forThe Perl Journaland other publications.

Consulting
In addition to our training courses, Perl Training Australia also offers a variety of consulting
services. We cover all stages of the software development life cycle, from requirements analysis to
testing and maintenance.

Our expert consultants are both flexible and reliable, and are available to help meet your needs,
however large or small. Our expertise ranges beyond that of just Perl, and includes Unix system
administration, security auditing, database design, and of course software development.

Contact us
If you have any project development needs or wish to learn to use Perl to take advantage of its quick
development time, fast performance and amazing versatility; don’t hesitate to contact us.

Table 1-1. Perl Training Australia’s contact details

Phone: +61 3 9354 6001

Fax: +61 3 9354 2681

Email: contact@perltraining.com.au

Webpage: http://perltraining.com.au/

Address: 104 Elizabeth Street, Coburg VIC, 3058
AUSTRALIA

Perl Training Australia (http://perltraining.com.au/) 1

Chapter 1. About Perl Training Australia

2 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. Introduction
Welcome to Perl Training Australia’sPerl for System Administration. This is a one-day module in
which we will cover system administration users for Perl.

Course outline

• Brief introduction to Perl.

• Filesystem analysis and traversal.

• Mail processing and filtering.

• Privilege and security considerations.

• Logfile processing and monitoring.

• System interaction, wrappers, and process manipulation.

• Interacting with network services.

Assumed knowledge
This training module assumes the following prior knowledgeand skills:

• Previous programming experience.

• Thorough understanding of operators and functions, conditional constructs, subroutines and basic
regular expressions concepts.

Module objectives

• Some objectives

Platform and version details
Perl is a cross-platform computer language which runs successfully on approximately 30 different
operating systems. However, as each operating system is different this does occasionally impact on
the code you write. Most of what you will learn will work equally well on all operating systems;
your instructor will inform you throughout the course of anyareas which differ.

All Perl Training Australia’s Perl training courses use Perl 5, the most recent major release of the
Perl language. Perl 5 differs significantly from previous versions of Perl, so you will need a Perl 5
interpreter to use what you have learnt. However, older Perlprograms should work fine under Perl 5.

At the time of writing, the most recent stable release of Perlis version 5.8.8, however older versions
of Perl 5 are still common. Your instructor will inform you ofany features which may not exist in
older versions.

Perl Training Australia (http://perltraining.com.au/) 3

Chapter 2. Introduction

The course notes
These course notes contain material which will guide you through the topics listed above, as well as
appendices containing other useful information.

The following typographical conventions are used in these notes:

System commands appear inthis typeface

Literal text which you should type in to the command line or editor appears asmonospaced font .

Keystrokes which you should type appear like this:ENTER. Combinations of keys appear like this:
CTRL -D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

Parts of commands or other literal text which should be replaced by your own specific values appear
like this

Notes and tips appear offset from the text like this.

Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

Notes marked with "Readme" are pointers to more information which can be found in your
textbook or in online documentation such as manual pages or websites.

Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

Other materials
In addition to these notes, it is highly recommend that you obtain a copy of Programming Perl (2nd
or 3rd edition) by Larry Wall, et al., more commonly referredto as "the Camel book". While these
notes have been developed to be useful in their own right, theCamel book covers an extensive range
of topics not covered in this course, and discusses the concepts covered in these notes in much more
detail. The Camel Book is considered to be the definitive reference book for the Perl programming
language.

The page references in these notes refer to the3rd editionof the camel book. References to the 2nd
edition will be shown in parentheses.

4 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Why use Perl for System
Administration?

For years, Perl has been the scripting language of choice formany system administrators. There are
many factors which have influenced this choice. Some of theseare:

• Excellent text manipulation capabilities. Perl excels at manipulating log files and other regular
data. This makes it easy to automate much of the general housekeeping associated with system
maintenance. It also makes it easy to extract data and trendsfrom different kinds of application
log files.

• CPAN. The Comprehensive Perl Archive Network, gives Perl almost infinite extensibility, full
database connectivity and Unicode support. There are literally thousands of third party modules to
solve all sorts of different problems. If you have a task to fulfil then chances are reasonable that
someone else has already done some of it for you.

• DBI. Perl’s Database interface supports a wide range of third party databases. Further it presents a
consistent interface for each. Using this module simplifiesthe management of disparate database
platforms.

• Portability. Perl exists on more than 30 different operating systems. This allows well written code
to be developed on one platform and deployed across many, simplifying automation tasks.

• Speed. Perl is fast to write and fast to run, making it perfectfor small once-off tasks. Yet Perl is
also great for large projects with support for full test coverage, documentation and modules.

• Documentation. Perl has extensive documentation freely available. This is one of Perl’s biggest
assets. Every built in function comes with a full description and many with usage examples. Perl’s
modules also come with extensive documentation as well as test suites and example code.

• Familiarity. Much of what can be done in bash, sed, awk and C can be transferred almost directly
into Perl code. Likewise the format of many functions are equivalent to common Unix commands.

• Low-level access. As well as allowing access to high-level functionality, Perl makes it easy to
work directly with hardware, sockets and to fulfil other low-level requirements.

• Freedom. Perl is licenced under both the Artistic license and the GNU Public License and is freely
available.

Perl Training Australia (http://perltraining.com.au/) 5

Chapter 3. Why use Perl for System Administration?

6 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

In this chapter...
This chapter aims to provide a quick tour of Perl’s basics. You can skip much of this material if you
already know Perl.

The concepts in this chapter are used extensively throughout the rest of these notes, and this
information is intended for quick reference rather than in-depth analysis.

For a greater discussion on these concepts, refer to Perl Training Australia’sProgramming Perl
course notes (available online at http://perltraining.com.au/notes.html), orProgramming Perl, 3rd Ed
by Larry Wall et al (commonly referred to as theCamel Book).

Important basics

Help
Perl comes with a very detailed help system calledperldoc . This is installed on most systems, and
works similarly to the Unixman. Useful pages are listed below.

perldoc perldoc # Instructions on using perldoc

perldoc perltoc # Perl table of contents

perldoc perl # Overview of Perl

perldoc perlfunc # Full list of Perl functions
perldoc -f <function_name> # Help with a specific function

perldoc perlop # Full list of Perl operators

perldoc perlmodlib # List of modules installed with Perl
perldoc perllocal # List of locally installed modules

perldoc <module_name> # Documentation for specific module

Shebang line
All Perl programs should start with a shebang line. On Unix and Unix-like operating systems, this
line should specify where to find Perl. For example:

#!/usr/bin/perl

On Microsoft Win32, and other systems which rely on other data to determine where to find the
interpretor this can be shortened to:

#!perl

It is a good practice, regardless of your operating system, to include the full Unix path, as this makes
your programs more portable between systems.

Perl Training Australia (http://perltraining.com.au/) 7

Chapter 4. Perl Basics

Strictures and warnings
Perl comes with two great programming aids; strictures and warnings. We strongly recommend you
turn these on and leave them on for every program you write.

#!/usr/bin/perl -w
use strict;

Or alternately (versions of Perl 5.6.0 and above):

#!/usr/bin/perl
use strict;
use warnings;

Strict

Strict ensures that you pre-declare your variables, don’t use symbolic references and don’t have
barewords. Pre-declaring your variables is just a matter ofpreceding the variable name with a
scoping keyword (such asmy) the first time you use it. It saves you from making accidentalspelling
mistakes:

without strict;
$num_of_freinds = 5; # Oops, poor spelling!

print "I have $num_of_friends friends\n";

With strict, compilation of your program would die with an error:

Global symbol "$num_of_friends" requires explicit packag e name

telling you that Perl has never seen the$num_of_friends variable before.

Symbolic references are only really needed for very advanced operations in Perl; for everything else
the same job can be done faster and more cleanly using ahash. As such, we will not mention
symbolic references further in this course, except to say that you don’t want to use them by mistake.

Barewords are words in your programs with no identifying characteristics. For each case of a
bareword, Perl has toguessat run-time whether it’s a string, or a call to a subroutine, and this can
introduce bugs if Perl guesses differently to what you intended. Since it’s trivial to be clear on this
distinction, you will never need to use barewords either.

Warnings

Warnings turns on helpful advice to let you know that Perl thinks you’ve probably done something
wrong. These warnings aren’t necessarily show-stoppers, but if you’re getting them, it’s worth
spending some time wondering why. A few things that trigger warnings are:

• Trying to read from or write to an unopened filehandle, socketor device.

• Treating a string of non-numeric characters as if it were a number.

• Printing or performing comparisons with undefined values.

• Assigning an odd number of elements to a hash (collection of key-value pairs).

8 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

Comments
Comments are wonderful things which help future maintainers, including yourself in 6 months time,
decipher your code. These should be liberally spread through your code.

To start a comment just add a#. Your comment will then last until the end of line:

This comment takes the whole line

print "Hello World!"; # This comment starts part way through

It’s a good idea to include a comment at the top of your code saying what it does, and who wrote it.
This allows the future maintainer of your code contact you, and tell you how grateful they are that
you provided such good comments. It’s also recommended you include the date (at least a month and
year) when you wrote the code.

Starting your program
Each of your programs should start with:

#!/usr/bin/perl -w
This program....
Author: Your Name <you@some.address.somewhere>
Date: Month Year
use strict;

Variables
There are two rules on user-defined variable names. They are:

• Variable names may only consist of alphabet, numerical and the underscore (_) characters.

• Variable names must start with an alphabet character.

There are variables whose names do not conform to these rules, however they areSpecialvariables.
We’ll cover them later.

Perl has three basic variable types, and each is preceded by apunctuation character known as asigil.
The variables and sigils are scalars ($), arrays (@), and hashes (%).

Scalars
Perl’s fundamental type is the scalar. A scalar contains asinglepiece of information; such as a
number, a character, a string, a filehandle, or a reference (pointer). The sigil for a scalar variable is
the dollar ($). A mnemonic for this is the$ looks a bit like anS for single or scalar.

my $name = "Perl Training Australia";
my $number = 123;
my $float = 234.54;
my $char = "a";

Unlike strictly typed programming languages (such as C and Java), Perl does not care what kind of
value you’re putting in a scalar. If you treat a scalar containing a number as a string, Perl will turn it
into a string. If you treat a scalar containing a string as a number, Perl will try to turn it into a

Perl Training Australia (http://perltraining.com.au/) 9

Chapter 4. Perl Basics

number. Adding integers and floating point numbers results in a floating point result. If you want to
coerce it back into an integer, that’s possible too. If you assign a string to a variable which was
previously a filehandle, Perl doesn’t mind.

my $new_num = $number + $float; # 357.54
my $silly = $number + $name; # 123 (and a warning)

print $silly . $char; # prints "123a"

Further, Perl sets no limit on the length of your strings, or the size of your numbers. However, limits
may still exist due to environmental influences such as machine precision and memory availability.
There is no need to tell Perl how long your string will be.

Quotes and interpolation

Perl has two sets of quote that are used for delimiting strings. Double quotes (") and single quotes
(’). In many cases in your program these can be used interchangeably:

my $name = ’Perl Training Australia’;
my $home = "Melbourne";

However there is one difference. Double quotesinterpolate while single quotes do not.
Interpolation allows us to add variables within a set of double quotes and have those variables be
replaced with their contents. For example:

print "I work at $name"; # prints "I work at Perl Training Aust ralia"

print ’I work at $name’; # prints "I work at $name"

Control characters such as\n for newline,\t for tab and\b for bell can also be interpolated within
double quotes. These are merely treated as pairs of characters within single quotes.

To escapecharacters within quotes, to remove any special interpolative meanings, use the backslash
(\) character. To escape a backslash use two:\\ .

print "He said \"Hi Sally"";
print ’It is Tim\’s sandwich’;

Perl also allows the programmer to pick their own quotes, by using theq (single-quotes) andqq

(double-quotes) operators. The following are equivalent to the two lines above:

print qq{He said "Hi Sally"};
print q{It is Tim’s sandwich};

Arrays
An array is an ordered list of scalars. Arrays can contain anynumber of scalars (again within
memory and other machine constraints), and there are no restrictions on what those scalars may
contain. The sigil for an array is an at-sign (@). A mnemonic for this is that@looks likea for array or
all.

my @numbers = (1, 2, 3, 4, 5);
my @friends = ("Jane", "Bob", "Alice", "Eve");
my @mixed = (1, "Jane", 4, "Jacob", 7, 12.12);
my @info = ($name, $home);

10 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

Array indexes start at 0. So@numbers has the indexes 0 through to 4.

Array lookups

To look up a single element in an array we do the following:

print $friends[3]; # prints "Eve"

notice that we use a$ sign here rather than an@sign. This is because we’re getting asinglething
from the array: ascalar.

Changing array elements

To change an element in the array we use the same syntax:

$numbers[3] = 20; # @numbers is now (1, 2, 3, 20, 5)

Adding array elements

Adding an element to the array is the same as changing an element, except in this case, the previous
value was empty.

$mixed[5] = "Ben"; # (1, "Jane", 4, "Jacob", 7, 12.12, "Ben") ;

A betterway of doing this is topush the value on to the end of the array, as this saves us having to
know what index value we are up to.

push @mixed, "Joe"; # (1, "Jane", 4, "Jacob", 7, 12.12, "Ben" , "Joe");

Counting backwards

We can also count backwards through our array.-1 represents the last element,-2 the second last,-3
the third last and so on. Thus:

print $numbers[-2]; # prints "20"

Last index

To find the last index of an array we use a strange looking notation as follows:

my @friends = ("Jane", "Bob", "Alice", "Eve");
print $#numbers; # prints "3" (last index)

unfortunately it’s easy to swap the$ and#, resulting in:

print #$numbers; # Whoops!

which comments out$numbers so that print has to look for its arguments on the next line of code.
More often than not, we actually want thelengthof the array, rather than the last index.

Perl Training Australia (http://perltraining.com.au/) 11

Chapter 4. Perl Basics

Array length

There is one inherentlyscalarpiece of information for an array, and that is its length. Since Perl does
it’s best todo what I mean (dwim), treating an array like a scalar will return its length.

my $length = @friends; # length is 4

Interpolation

As a convenience, Perl allows us to interpolate arrays into strings in the same way we do scalars:

print "The lucky numbers are @numbers";

In this case, each element of the array is joined together, separated with single spaces.

Hashes
A hash is an unordered mapping of key-value pairs. Every key and value must be a scalar. Hashes
can contain any number of key-value pairs and, like arrays, there are no restrictions on the scalar
contents, although the keys are always treated as strings.

To understand this mapping consider a telephone book. In thetelephone book we have names (keys)
which map to numbers (values). It is easy enough to find a telephone number given a name, but very
time-consuming to find a name given a telephone number. Perl’s hashes are the same.

Likewise it doesn’t make sense for a telephone book to have multiple entries for the exact same name
(and address) details. How would you know which number to call? Thus, hash keys must be unique.

The sigil for hashes is the percent (%). There’s no good mnemonic for this one.

my %age_of = (
Jane => 23,
Bob => 63,
Alice => 38,
Eve => 47,

);

my %favourite_colour_of = (
Jane => "Blue",
Bob => "Brown",
Alice => "Green",
Eve => "Yellow",

);

The strange arrow=> is called thefat comma. It behaves like an ordinary comma except it’s bigger
(and therefore easy to see) and it automatically quotes the value to its left. Values on the right hand
side, still need to be quoted.

Hash lookups

To look up a single element in a hash we do the following:

print $age_of{Jane}; # prints "23"

Again we use a$ sign instead of a%sign. This is because we’re getting asinglething from the hash:
a scalar.

12 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

Changing hash values

To change a value in the hash we use the same syntax:

$age_of{Jane} = 24;

Adding hash pairs

Adding a key-value pair to the hash uses the same as changing avalue, if the key was not previously
in the hash, it will spring into existence.

$age_of{Donald} = 15; # Donald is now in the hash.

Hash size

To find out how many pairs of keys and values we have, we have to use either thekeys or values

function. These return all of the keys and values respectively. Taking the result of either function in a
scalar context returns us the result we want.

my $num_of_pairs = keys(%age_of);

Interpolation

There is no one obvious way to display hash data, so hashes do not interpolate in double quoted
strings.

Special Variables
Perl has a number of special variables. The three that we willsee most often in this course are are$_,
@ARGVand%ENV.

$_

$_ is at the same time the most used and least seen special variable. It is usually pronounced as
dollar underscorebut is sometimes referred to simply asit. Many of Perl’s built-in functions take$_

as their default argument. Such asprint .

prints $_;
print;

The usefulness of$_ will become apparent as we explore many of the common input, output, and
string-processing functions of Perl.

@ARGV

@ARGVis the array which stores all the command line arguments which the Perl program was called
with. These may include filenames, switches, and other input.

Perl Training Australia (http://perltraining.com.au/) 13

Chapter 4. Perl Basics

%ENV

%ENVis a hash of your program’s environment. The keys in this hashdepend on your operating
system. Changing values in this hash changes the environment for your program and any other
processes it spawns. However, changes do not affect the parent process; in other words they are lost
after your program has finished running.

Conditionals and truth
Perl’s conditional structures should look pretty familiarto most programmers. However, before we
start this section we should take a brief detour into what Perl views as true and false.

In fact, it’s easier to look at what Perl views as false, because this is a very short list. Perl sees the
following four things as false:

1. The undefined value.

2. The number zero:0.

3. The string of the single digit zero:"0" (or ’0’).

4. The empty string:"" (or ”).

Everythingelse is true.

my $undefined; # false
undef; # false
"0"; # false
""; # false
0; # false
"apple"; # true
’banana’; # true
1; # true
-1; # true
"00"; # true
my @array; # false in scalar context (size 0)
@array = (1,2,3); # now true in scalar context

Comparison operators
Perl has two flavours of comparison operators, strings and numbers.

$a < $b # Numerical less than
$a > $b # Numerical greater than
$a <= $b # Numerical less than or equal
$a >= $b # Numerical greater than or equal
$a == $b # Numerical equality
#a != $b # Numerical inequality

$a lt $b # String less than
$a gt $b # String greater than
$a le $b # String less than or equal
$a ge $b # String greater than or equal
$a eq $b # String equality
$a ne $b # String inequality

It’s important to use the correct comparison operator for your intention.

14 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

"10" lt "9"; # true (1 comes before 9)
"00" == 0; # true ("00" is 0 when treated as a number)
"3" == "3com"; # true (but generates a warning)
"3" eq "3com"; # false

Boolean operators
Perl has two flavours of boolean operators, C-like and English-like. The primary difference between
them is one of precedence. English-like operators have almost the lowest precedence possible and
are always evaluated last. C-like operators have the same precedence as they do in C. It is always
possible to use parentheses to force the order of execution,and it is recommended that you do so if
you feel any ambiguity exists.

For more information readperldoc perlop .

$a && $b # AND: True if $a and $b are true
$a and $b # As above.

$a || $b # OR: True if $a or $b is true (or both)
$a or $b # As above.

! $a # NOT: True if $a is false
not $a # As above.

$a xor $b # Exclusive-OR: True if either $a or $b
is true, but not both.

if-elsif-else
Like most imperative languages, Perl has a fairly standard if-then-else structure:

if(<condition>) {

}
elsif(<condition>) {

}
else {

}

In Perl’s case both the parentheses and the braces are required. Theelsif andelse blocks are
optional. Multipleelsif blocks may appear after theif and before anyelse .

unless

Perl also has anunless construct.unless is the same asif not. For example the following two code
snippets do the same thing.

if(not $I_have_apples) { unless($I_have_apples) {
buy_apples(); buy_apples();

} }

make_apple_pie(); make_apple_pie();

Perl Training Australia (http://perltraining.com.au/) 15

Chapter 4. Perl Basics

Trailing conditionals

Perl provides trailing conditional statements.

buy_apples() if not $I_have_apples;

buy_apples() unless $I_have_apples;

In this form the parentheses and curly braces are not required. However only a single statement may
appear on the left.

Because the conditional appears on the right, trailing conditionals have the potential to reduce
readability of your code. If the condition is important, youshould always use the full form. Consider
the following example:

launch_nuclear_missiles() if red_button_pushed();

For someone skimming down the left of the code, this can be quite disconcerting.

Looping constructs
Perl has two main looping constructs.while andforeach .

while

while(<condition>) {

}

Just like Perl’sif statement, the parentheses and braces are required.

while is typically used to iterate over input from the user or file and in cases where the number of
iterations is either not known beforehand, or not relevant.

The following code echos back data passed in on STDIN:

while(<STDIN>) {
print;

}

This takes advantage of$_ in two ways.while(<STDIN>) is a short-cut for:

while(defined($_ = <STDIN>))

In fact, we can further reduce our above example to the following:

while(<>) {

}

<> is a highly magical operator. First it checks@ARGVto see if there are arguments to use a filename.
If there are, it will open each file in order, and iterate through each line. If@ARGVis empty, it checks
for input onSTDIN.

16 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

foreach

using $_
foreach (@array) {

}

foreach my $value (@array) {

}

Again, parentheses and braces are required.

foreach is very handy for iterating over arrays and lists. In the firstexample,$_ is set to each array
element as we walk through. In the second example$value is set instead, and$_ remains untouched.

In foreach loops the iterator ($_ or $value in the above examples)is the element in the array. Thus
the below code squares the values in the array:

foreach my $value (@array) {
$value = $value * $value;

}

Subroutines

sub name {

}

Subroutines are user-written functions. They are compiledat the same time as the rest of your code,
but do not get executed (regardless of where they appear in your program) until they are called.

Call the buy_apples subroutine:
buy_apples();

then later...

The buy_apples subroutine
sub buy_apples {

go_shopping();
select_apples();
pay();

}

Subroutines take one or more scalar arguments (remember that arrays and hashes can be treated as
just lists of scalars), and can return one or more scalars. Arguments are stored in the@_array.

print second_arg(@array);

sub second_arg {
my ($first, $second) = @_;

return $second;
}

Perl Training Australia (http://perltraining.com.au/) 17

Chapter 4. Perl Basics

print first_last(@array);

sub first_last {
my $first = shift @_;
my $last = pop @_;

return ($first, $last);
}

Passing hashes and arrays into subroutines causes them to lose their identity.

if(greater_length(@array1, @array2)) {
...

}

sub greater_length {
my (@array1, @array2) = @_;

@array1 now has * all * of the elements
@ @array2 is * empty *

return @array1 > @array2; # Always true!
}

To avoid this use references:

if(greater_length(\@array1, \@array2)) {
...

}

sub greater_length {
my ($array1, $array2) = @_;

my @array1 = @$array1;
my @array2 = @$array2;

return @array1 > @array2;
}

File I/O
To open files in Perl we usually theopen function for convenience. We can also use thesysopen

function if we need precision. Theopen function allows files to be opened in the following modes:

<

Reading. If file doesn’t exist an error will occur.

>

Writing. If the file already exists, it will be clobbered, just like the Unix>. If the file doesn’t
exist, it will be created.

>>

Appending. If the file already exists, data will be added to the end. If the file doesn’t exist, it
will be created.

18 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

|

Pipe. Execute the specified process and either pipe input to it, or take output from it. This will
be covered more later.

A plus (+) character can be added to the mode (+<, >+, >>+) in order open the file for both reading
and writing. This is very rarely as useful as it might at first sound.

Reading

Open file for reading, die on failure
open(FILE, "<", $filename) or die "Could not open $filename : $!";

open(FILE, "< $filename") or die "Could not open $filename : $!";

while(<FILE>) {
process line

}

The three argument version ofopen has the following security advantages over the two argument
version, and is recommended.

• The mode must be specified. In the two argument version ofopen it is possible to omit the mode.
If however, the filename then contains a mode character (for example$filename = ">

/etc/passwd" , that will be assumed to be the file mode. This can have undesirable consequences.

• Filenames are taken literally. In the two argument version of open whitespace before and after the
filenames is ignored. Having Perl treat your filenames literally makes it possible to more easily
specify filenames which include unescaped spaces and shell meta-characters.

Traditionally, bareword filehandles in Perl are true globals. If another part of your script, or a module
you import, opens a file and uses the same filehandle name as an earlier section of your code, the old
file will be closed.

Fortunately in Perl versions 5.6.0 and above, we can use scalar filehandles:

open(my $fh, "<" $filename) or die "Could not open $filename : $!";

while(<$fh>) {
process line

}

These have the advantage that access to the file now has scope.As soon as the filehandle goes out of
scope the file will be closed.

Changing the input record separator

By default, files will be read in line by line. To change this weneed to change the input record
separator$/ . Changing this also changes whatchomp removes when called.

$/ = undef; # Read the whole file in at once
$/ = ""; # Read in paragraph by paragraph
$/ = "\n%\n"; # Read in Unix fortunes

open(my $fh, "<", $fortunes) or die $!;

while(<$fh>) {
chomp; # remove \n%\n

Perl Training Australia (http://perltraining.com.au/) 19

Chapter 4. Perl Basics

Do something with fortune
}

Keep in mind that$/ is a true global. Changing it in one part of your program changes it for all later
parts of your program. If you need to change$/ within a large program,localiseyour change:

{
local $/ = "\n%\n";

open(my $fh, "<", $fortunes) or die $!;

while(<$fh>) {
chomp; # remove %

Do something with fortune
}

}

Using local here, tells Perl to ensure that this change only occurs for the duration of the block (the
outer curly braces). Once execution leaves the block$/ will automatically revert to its previous
value. Subroutines called from within your block will see the localised value of%/.

Writing

Open file for writing, die on failure
open(my $fh, ">", $filename1) or die "Could not open $filena me: $!";
open(FILE, ">>", $filename2) or die "Could not open $filena me: $!";

foreach my $number (1 .. 10) {
print {$fh} $number, "\n";
print FILE $number, "\n";

}

The example above shows how to print the numbers 1 through to 10 to two different files. In the first,
we clobber the file if it already exists, in the second, weappendto it.

Notice that we donot include a comma after the filehandle when we are printing to it. Inserting a
comma would tell Perl to print out the filehandle memory location (which wouldn’t look very
interesting) rather than print to that location.

The curly braces around$fh in the firstprint statement are not required, but help make the
filehandle stand out and hopefully remove the temptation to add a comma after it.

CPAN
Perl’s biggest strength comes from its community. As an extension to that, many Perl programmers
write and maintain modules for free use for all as part of the Comprehensive Perl Archive Network
(CPAN).

CPAN provides more than 10,000 modules, making it an excellent starting point to help solve your
particular problem. However, you should keep in mind that not all CPAN modules are created equal.
Some are much better documented and written than others. As with any situation when you’re using

20 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. Perl Basics

third party code, you should take the time to determine the suitability of any given module for the
task at hand.

Many of the popular CPAN modules are pre-packaged for popular operating systems. In addition,
theCPAN.pmmodule that comes with Perl can make the task of finding and installing modules from
CPAN much easier.

For modules that aren’t packaged for your operating system,you can use theCPAN shell. This
requires administrator privileges, but on most operating systems can be as simple typingcpan at the
shell prompt:

hostname:/root# cpan

cpan shell -- CPAN exploration and modules installation (v1 .7601)
ReadLine support enabled

cpan>

Once inside the shell,help provides a list of help, andinstall will install a particular module. For
example, to install the moduleHTML::Template

cpan> install HTML::Template

The CPAN shell will locate the module, download it, check itsdependencies, and perform any
testing required.

For ActiveState Perl installations (which includes most Microsoft Windows machines) the use of
PPM (Programmer’s Package Manager) is recommended. PPM provides a command line interface
for downloading and installing pre-compiled versions of most CPAN modules.

Installing modules using PPM is just as easy as the CPAN shell:

C:\> ppm
PPM - Programmer’s Package Manager version 3.4.
Copyright (c) 2001 ActiveState Software Inc. All Rights Res erved.

Entering interactive shell. Using Term::ReadLine::Perl a s readline library.

Type ’help’ to get started.

ppm>

PPM expects double-colons in module names to be replaced with dashes for package names. So to
install theHTML::Template module we would use:

ppm> install HTML-Template

If automated installation fails using either system, or we do not have administrator access to the
machine, then we can also install a CPAN module manually. CPAN modules come in compressed
tarballs (.tar.gz), and should contain aREADMEand/orINSTALL file that contains instructions for
installation. However for almost all modules the proceedure is the same:

perl Makefile.PL
make
make test
make install

On Windows systems the freenmake utility from Microsoft can be used instead ofmake (but needs to
be installed separately).

Perl Training Australia (http://perltraining.com.au/) 21

Chapter 4. Perl Basics

autodie
Many Perl functions return a true value on success and a falsevalue on failure. Assuming success
without checking for failure can cause very strange errors.Thus, it is a wise idea to always check
your return values.

open(my $fh, "<", $filename) or die "Failed to open: $!";
...
close $fh; # Oops! Forgot to check for failure!

Unfortunately it’s very easy to forget to add an "or die" to a function call, and making sure you add
them all does tend to clutter up your code. A good alternativeis to use theautodie module.autodie

replaces functions with equivalents which succeed or die:

use autodie qw(open close);

open(my $fh, "<", $filename);
...
close $fh;

Now if any calls toopen or close fail, our program will automatically die with an error message. We
can useautodie with any Perl built-in function exceptprint .

Chapter summary
This chapter gave a whirl-wind tour through Perl’s essentials: the variables, conditionals, looping
constructs, subroutines and file I/O. We also briefly coveredhow to install modules via CPAN, and
the joys of theautodie module.

22 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

In this chapter...
In this chapter we begin to explore Perl’s powerful regular expression capabilities, and use regular
expressions to perform matching and substitution operations on text.

Regular expressions are a big reason of why so many people learn Perl. One of Perl’s most common
uses is string processing and it excels at that because of itsbuilt-in support for regular expressions.

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of
the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

What are regular expressions?
The easiest way to explain this is by analogy. You will probably be familiar with the concept of
matching filenames under DOS and Unix by using wild cards -* .txt or /usr/local/ * for instance.
When matching filenames, an asterisk can be used to match any number of unknown characters, and
a question mark matches any single character. There are alsoless well-known filename matching
characters.

Regular expressions are similar in that they use special characters to match text. The differences are
that more powerful text-matching is possible, and that the set of special characters is different.

Regular expressions are also known as REs, regexes, and regexps.

Regular expression operators and functions

m/PATTERN/ - the match operator
The most basic regular expression operator is the matching operator,m/PATTERN/.

• Works on$_ by default.

• In scalar context, returns true (1) if the match succeeds, or false (the empty string) if the match
fails.

• In list context, returns a list of any parts of the pattern which are enclosed in parentheses. If there
are no parentheses, the entire pattern is treated as if it were parenthesised.

• Them is optional if you use slashes as the pattern delimiters.

• If you use themyou can use any delimiter you like instead of the slashes. This is very handy for
matching on strings which contain slashes, for instance directory names or URLs.

• Using the/i modifier on the end makes it case insensitive.

Perl Training Australia (http://perltraining.com.au/) 23

Chapter 5. Regular expressions

while (<>) {
print if m/foo/; # prints if a line contains "foo"
print if m/foo/i; # prints if a line contains "foo", "FOO", et c
print if /foo/i; # exactly the same; the m is optional
print if m#foo#i; # the same again, using different delimite rs
print if /http:\/\//; # prints if a line contains "http://"

suffers from "leaning-toothpick-syndrome".
print if m!http://!; # using ! as an alternative delimiter
print if m{http://}; # using {} as delimiters

}

s/PATTERN/REPLACEMENT/ - the substitution operator
This is the substitution operator, and can be used to find textwhich matches a pattern and replace it
with something else.

• Works on$_ by default.

• In scalar context, returns the number of matches found and replaced.

• In list context, behaves the same as in scalar context and returns the number of matches found and
replaced (a cause of more than one mistake...).

• You can use any delimiter you want, the same as them// operator.

• Using /g on the end of it matches globally, otherwise matches (and replaces) only the first
instance of the pattern.

• Using the/i modifier makes it case insensitive.

fix some misspelled text

while (<>) {
s/freind/friend/g; # Correct freind to friend on entire lin e.
s/teh/the/g;
s/jsut/just/g;
s/pual/Paul/ig; # Correct (case insensitive) all occurren ces

of "pual" (or "Pual" or "PuAl" etc)
print;

}

Exercises

The above example can be found inexercises/spellcheck.pl .

1. Run the spelling check script over theexercises/spellcheck.txt file.

2. There are a few spelling errors remaining. Change your program to handle them as well. An
answer can be found inexercises/answers/spellcheck.pl .

24 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

Binding operators
If we want to usem// or s/// to operate on something other than$_ we need to use binding
operators to bind the match to another string.

Table 5-1. Binding operators

Operator Meaning

=~ True if the pattern matches

!~ True if the pattern doesn’t match

print "Please enter your homepage URL: ";
my $url = <STDIN>;

if($url !~ /^http:/) {
print "Doesn’t look like a http URL.\n";

}

if ($url =~ /geocities/) {
print "Ahhh, I see you have a geocities homepage!\n";

}

my $string = "The act sat on the mta";
$string =~ s/act/cat/;
$string =~ s/mta/mat/;

print $string; # prints: "The cat sat on the mat";

Easy modifiers
There are several modifiers for regular expressions. We’ve seen two already.

Table 5-2. Regexp modifiers

Modifier Meaning

/i Make match/substitute match case insensitive

/g Make substitute global (all occurrences are
changed)

You can find out about the other modifiers by reading perldoc perlre .

Meta characters
The special characters we use in regular expressions are calledmeta characters, because they are
characters that describe other characters.

Perl Training Australia (http://perltraining.com.au/) 25

Chapter 5. Regular expressions

Some easy meta characters

Table 5-3. Regular expression meta characters

Meta character(s) Matches...

^ Start of string

$ End of string

. Any single character except\n

\n Newline

\t Matches a tab

\s Any whitespace character, such as space, tab, or
newline

\S Any non-whitespace character

\d Any digit (0 to 9)

\D Any non-digit

\w Any "word" character - alphanumeric plus
underscore (_)

\W Any non-word character

\b A word break - the zero-length point between a
word character (as defined above) and a non-word
character.

\B A non-word break - anything other than a word
break.

Any character that isn’t a meta character just matches itself. If you want to match a character that’s
normally a meta character, you can escape it by preceding it with a backslash.

These and other meta characters are all outlined in chapter 5 (chapter 2, 2nd Ed) of the
Camel book and in the perlre manpage - type perldoc perlre to read it.

It’s possible to use the /m and /s modifiers to change the behaviour of the first three meta
characters (^ , $, and .) in the table above. These modifiers are covered in more detail later in the
course.

Under newer versions of Perl, the definitions of spaces, words, and other characters is
locale-dependent. Usually Perl ignores the current locale unless you ask it to do otherwise, so if
you don’t know what’s meant by locale, then don’t worry.

26 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

Some quick examples:

Perl regular expressions are often found within slashes

/cat/ # matches the three characters
c, a, and t in that order.

/^cat/ # matches c, a, t at start of line

/\scat\s/ # matches c, a, t with spaces on
either side

/\bcat\b/ # Same as above, but won’t
include the spaces in the text
it matches. Also matches if
cat is at the very start or
very end of a string.

we can interpolate variables just like in strings:

my $animal = "dog" # we set up a scalar variable
/$animal/ # matches d, o, g
/$animal$/ # matches d, o, g at end of line

/\$\d\.\d\d/ # matches a dollar sign, then a
digit, then a dot, then
another digit, then another
digit, eg $9.99
Careful! Also matches $9.9999

Quantifiers
What if, in our last example, we’d wanted to say "Match a dollar, then any number of digits, then a
dot, then only two more digits"? What we need are quantifiers.

Table 5-4. Regular expression quantifiers

Quantifier Meaning

? 0 or 1

* 0 or more

+ 1 or more

{n} match exactly n times

{n,} match n or more times

{n,m} match between n and m times

Here are some examples to show you how they all work:

/Mr\.? Fenwick/; # Matches "Mr. Fenwick" or "Mr Fenwick"
/camel. * perl/; # Matches "camel" before "perl" in the

same line.
/\w+/; # One or more word characters.
/x{1,10}/; # 1-10 occurrences of the letter "x".

Perl Training Australia (http://perltraining.com.au/) 27

Chapter 5. Regular expressions

Exercises
For these exercises you may find using the following structure useful:

while(<>) {
chomp;

print "$_ matches!\n" if (/PATTERN/); # put your regexp here
}

This will allow you to specify test files on the command line tocheck against, or to provide input via
STDIN. Hit CTRL -D to finish entering input via STDIN. (Use the key combinationCTRL -Z on
Windows).

You can find the above snippet in:exercises/regexploop.pl .

1. Earlier we mentioned writing a regular expression for matching a price. Write one which
matches a dollar sign, any number of digits, a dot and then exactly two more digits.

Make sure you’re happy with its performance with test cases like the following:12.34 ,
$111.223 , $.24 .

2. Write a regular expression to match the word "colour" witheither British or American spellings
(Americans spell it "color")?

3. How can we match any four-letter word?

Seeexercises/answers/regexp.pl for answers.

Grouping techniques
Let’s say we want to match any lower case character.\w matches both upper case and lower case so
it won’t do what we need. What we need here is the ability to match any characters in agroup.

Character classes
A character class can be used to find a single character that matches any one of a given set of
characters.

Let’s say you’re looking for occurrences of the word "grey" in text, then remember that the
American spelling is "gray". The way we can do this is by usingcharacter classes. Character classes
are specified using square brackets, thus:/gr[ea]y/

We can also use character sequences by saying things like[A-Z] or [0-9] . The sequences\d and\w

can easily be expressed as character classes:[0-9] and[a-zA-Z0-9_] respectively.

Inside a character class some characters take on special meanings. For example, if the first character
is a caret, then the list is negated. That means that[^0-9] is the same as\D --- that is, it matches any
non-digit character.

28 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

Here are some of the special rules that apply inside character classes.

• ^ at the start of a character class negates the character class, rather than specifying the start of a
line.

• - specifies a range of characters. If you wish to match a literal-, it must be either the first or the
last character in the class.

• $. () {} * + and other meta characters taken literally.

Exercises

Your instructor will help you do the following exercises as agroup.

1. How would we find any word starting with a letter in the first half of the alphabet, or with X, Y,
or Z?

2. What regular expression could be used for any word that starts with lettersother than those
listed in the previous example.

3. There’s almost certainly a problem with the regular expression we’ve just created - can you see
what it might be?

Alternation
The problem with character classes is that they only match one character. What if we wanted to
match any of a set of longer strings, like a set of words?

The way we do this is to use the pipe symbol| for alternation:

/rabbit|chicken|dog/ # matches any of our pets

The pipe symbol (also called vertical bar) is often found on the same key as \ .

However this will match a number of things we might not intendit to match. For example:

• rabbiting

• chickenhawk

• hotdog

We need to specify that we want to only match the word if it’s ona line by itself.

Now we come up against another problem. If we write somethinglike:

/^rabbit|chicken|dog$/

to match any of our pets on a line by itself, it won’t work quiteas we expect. What this actually says
is match a string that:

• starts with the string "rabbit" or

• has the string "chicken" in it or

Perl Training Australia (http://perltraining.com.au/) 29

Chapter 5. Regular expressions

• ends with the string "dog"

This will still match the three incorrect words above, whichis not what we intended. To fix this, we
enclose our alternation in round brackets:

/^(rabbit|chicken|dog)$/

Finally, we will now only match any of our pets on a line, by itself.

Alternation can be used for many things including selectingheaders from emails for printing out:

a simple matching program to get some email headers and prin t them out

while (<>) {
print if /^(From|Subject|Date):\s/;

}

The above email example can be found inexercises/mailhdr.pl .

The concept of atoms
Round brackets bring us neatly into the concept of atoms. Theword "atom" derives from the Greek
atomosmeaning "indivisible" (little did they know!). We use it to mean "something that is a chunk of
regular expression in its own right".

Atoms can be arbitrarily created by simply wrapping things in round brackets --- handy for
indicating grouping, using quantifiers for the whole group at once, and for indicating which bit(s) of
a matching function should be the returned value.

In the example used earlier, there were three atoms:

1. start of line

2. rabbit or chicken or dog

3. end of line

How many atoms were there in our dollar prices example earlier?

Atomic groupings can have quantifiers attached to them. For instance:

match four words (without punctuation)
/(\b\w+\s *){4}/;

match three or more words starting with "a" in a row
eg "all angry animals"
/(\ba\w * \s *){3,}/;

match a consonant followed by a vowel twice in a row
eg "tutu" or "tofu"
/\b([^\W\d_aeiou][aeiou]){2}\b/;

30 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Regular expressions

Exercises

1. Determine whether your name appears in a string (an answer’s in
exercises/answers/namere.pl).

2. What pattern could be used to match a blank line? (Answer:
exercises/answers/blanklinere.pl)

3. Remove footnote references (like [1]) from some text (seeexercises/footnote.txt for some
sample text, andexercises/answers/footnote.pl for an answer). (Hint: have a look at the
footnote text to determine the forms footnotes can take).

4. Write a script to search a file for any of the names "Yasser Arafat", "Boris Yeltsin" or "Paul
Keating". Print out any lines which contain these names. Youcan find a file including these
names and others inexercises/famous_people.txt . (Answer:
exercises/answers/namesre.pl)

5. What pattern could be used to match any of: Elvis Presley, Elvis Aron Presley, Elvis A. Presley,
Elvis Aaron Presley. You can find a test file inexercises/elvis.txt . (Answer:
exercises/answers/elvisre.pl)

6. What pattern could be used to match an IP address such as192.168.53.124 , where each part of
the address is a number from 0 to 255? (Answer:exercises/answers/ipre.pl)

Chapter summary

• Regular expressions are used to perform matches and substitutions on strings.

• Regular expressions can include meta-characters (characters with a special meaning, which
describe sets of other characters) and quantifiers.

• Character classes can be used to specify any single instanceof a set of characters.

• Alternation may be used to specify any of a set of sub-expressions.

• The matching operator ism/PATTERN/ and acts on$_ by default.

• The substitution operator iss/PATTERN/REPLACEMENT/and acts on$_ by default.

• Matches and substitutions can be performed on strings otherthan$_ by using the=~ (and!~)
binding operator.

Perl Training Australia (http://perltraining.com.au/) 31

Chapter 5. Regular expressions

32 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

In this chapter...
This chapter builds on the basic regular expressions taughtearlier in the course. We will learn how to
handle data which consists of multiple lines of text, including how to input data as multiple lines and
different ways of performing matches against that data.

Assumed knowledge
You should already be familiar with the following topics:

• Regular expression meta characters

• Quantifiers

• Character classes and alternation

• Them// matching function

• Thes/// substitution function

• Matching strings other than$_ with the=~ matching operator

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of
the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

Capturing matched strings to scalars
Perl provides an easy way to extract matched sections of a regular expression for later use. Any part
of a regular expression that is enclosed in parentheses is captured and stored into special variables.
The substring that matches first set of parentheses will be stored in$1, and the substring that matches
the second set of parentheses will be stored in$2 and so on. There is no limit on the number of
parentheses and associated numbered variables that you canuse.

/(\w)(\w)/; # matches 2 word characters and stores them in $1 , $2
/(\w+)/; # matches one or more word characters and stores the m in $1

Parentheses are numbered from left to right by theopeningparenthesis. The following example
should help make this clear:

$_ = "fish";
/((\w)(\w))/; # captures as follows:

$1 = "fi", $2 = "f", $3 = "i"

$_ = "1234567890";
/(\d)+/; # matches each digit and then stores the last digit

matched into $1
/(\d+)/; # captures all of 1234567890

Perl Training Australia (http://perltraining.com.au/) 33

Chapter 6. Advanced regular expressions

Evaluating a regular expression in list context is another way to capture information, with
parenthesised sub-expressions being returned as a list. Wecan use this instead of numbered variables
if we like:

$_ = "Our server is training.perltraining.com.au.";
my ($full, $host, $domain) = /(([\w-]+)\.([\w.-]+))/;
print "$1\n"; # prints "training.perltraining.com.au."
print "$full\n"; # prints "training.perltraining.com.au ."
print "$2 : $3\n"; # prints "training : perltraining.com.au ."
print "$host : $domain\n" # prints "training : perltraining .com.au."

A regular expression that fails to match the given string does not always reset $1, $2 etc.
Therefore, if we do not explicitly check that our regular expression worked, we can end up using
data from a previous match. This can mean that the following code may cause unexpected
surprises:

while(<>) {
check that we have something that looks like a date in
YYYY-MM-DD format.

if(/(\d{4})-(\d{2})-(\d{2})/) {
print STDERR "valid date\n";

}
next unless $1;

if($1 >= $recent_year) {
print RECENT_DATA $_;

}
else {

print OLD_DATA $_;
}

}

If this code encounters a line which doesn’t appear to be a valid date, the line may be printed to
the same file as the last valid line, rather than being discarded. This could result in lines with
dates similar to "1901-3-23" being printed to RECENT_DATA, or lines with dates like "2003-1-1"
being printed to OLD_DATA.

Extended regular expressions
Regular expressions can be difficult to follow at times, especially if they’re long or complex.
Luckily, Perl gives us a way to split a regular expression across multiple lines, and to embed
comments into our regular expression. These are known asextended regular expressions.

To create an extended regular expression, we use the special/x switch. This has the following effects
on the match part of an expression:

• Spaces (including tabs and newlines) in the regular expression are ignored.

• Anything after an un-escaped hash (#) is ignored, up until the end of line.

Extended regular expressions do not alter the format of the second part in a substition. This must still
be written exactly as you wish it to appear.

34 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

If you need to include a literal space or hash in an extended expression you can do so by preceeding
it with a backslash.

By using extended regular expressions, we can change this:

Parse a line from ’ls -l’
m{^([\w-]+)\s+(\d+)\s+(\w+)\s+(\w+)\s+(\d+)\s+(\w+\ s+\d+\s+[\d:]+)\s+(. *)$};

into this:

Parse a line from ’ls -l’

m{
^ # Start of line.
([\w-]+)\s+ # $1 - File permissions.
(\d+)\s+ # $2 - Hard links.
(\w+)\s+ # $3 - User
(\w+)\s+ # $4 - Group
(\d+)\s+ # $5 - File size
(\w+\s+\d+\s+[\d:]+)\s+ # $6 - Date and time.
(. *) # $7 - Filename.
$ # End of line.

}x;

As you can see, extended regular expressions can make your code much easier to read, understand,
and maintain.

Exercise
Web server access logs typically contain long lines of information, only some of which is of interest
at any given time. In theexercises/access-pta.log file you’ll see an example taken from Perl
Training Australia’s webserver.

1. Write a regular expression which captures the request origin, the access date and requested
page. Print this out for each access in the file. A starting program can be found in
exercises/log-process.pl .

You can find an answer to this exercise inexercises/answers/log-process.pl .

Advanced exercise

1. Split tab-separated data into an array then print out eachelement using aforeach loop (an
answer’s inexercises/answers/tab-sep.pl , an example file is inexercises/tab-sep.txt).

Greediness
Regular expressions are, by default, "greedy". This means that any regular expression, for instance
. * , will try to match the biggest thing it possibly can. Greediness is sometimes referred to as
"maximal matching".

Greediness is also left to right. Each section in the regularexpression will be as greedy as it can
while still allowing the whole regular expression to match if possible. For example,

Perl Training Australia (http://perltraining.com.au/) 35

Chapter 6. Advanced regular expressions

$_ = "The cat sat on the mat";

/(c. * t)(. *)(m. * t)/;

print $1; # prints "cat sat on t"
print $2; # prints "he "
print $3; # prints "mat";

It is possible in this example for another set of matches to occur. The first expressionc. * t could
have matchedcat leaving sat on the to be matched by the second expression. * . However, to do
that, we need to stopc. * t from being so greedy.

To make a regular expression quantifier not greedy, follow itwith a question mark. For example. * ?.
This is sometimes referred to as "minimal matching".

$_ = "The fox is in the box.";

/(f. * x)/; # greedy -- $1 = "fox is in the box"
/(f. * ?x)/; # not greedy -- $1 = "fox"

$_ = "abracadabra";

/(a. * a)/ # greedy -- $1 = "abracadabra"
/(a. * ?a)/ # not greedy -- $1 = "abra"

/(a. * ?a)(. * a)/ # first is not greedy -- $1 = "abra"
second is greedy -- $2 = "cadabra"

/(a. * a)(. * ?a)/ # first is greedy -- $1 = "abracada"
second is not greedy -- $2 = "bra"

/(a. * ?a)(. * ?a)/ # first is not greedy -- $1 = "abra"
second is not greedy -- $2 = "ca"

Exercise

1. Write a regular expression that matches the first and last words on a line, and print these out.

More meta characters
Here are some more advanced meta characters, which build on the ones covered earlier.

Table 6-1. More meta characters

Meta character Meaning

\c X Control character, i.e.CTRL -X

\0 nn Octal character represented bynn

\x nn Hexadecimal character represented bynn

\l Lowercase next character

\u Uppercase next character

\L Lowercase until\E

\U Uppercase until\E

36 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

Meta character Meaning

\Q Quote (disable) meta characters until\E

\E End of lowercase/uppercase/quote

\A Beginning of string, regardless of whether /m is
used.

\Z End of string (or before newline at end),
regardless of whether /m is used.

\z Absolute end of string, regardless of whether /m is
used.

search for the C++ computer language:

/C++/ # wrong! regexp engine complains about the plus signs
/C\+\+/ # this works
/\QC++\E/ # this works too

search for "bell" control characters, eg CTRL-G

/\cG/ # this is one way
/\007/ # this is another -- CTRL-G is octal 07
/\x07/ # here it is as a hex code

Read about all of these and more in perldoc perlre .

Working with multi-line strings
Often, you will want to read a file several lines at a time. Consider, for example, a typical Unix
fortune cookie file, which is used to generate quotes for thefortune command:

All language designers are arrogant. Goes with the territor y... :-)
-- Larry Wall in <1991Jul13.010945.19157@netlabs.com >

%
Although the Perl Slogan is There’s More Than One Way to Do It, I hesitate
to make 10 ways to do something. :-)

-- Larry Wall in <9695@jpl-devvax.JPL.NASA.GOV >

%
And don’t tell me there isn’t one bit of difference between nu ll and space,
because that’s exactly how much difference there is. :-)

-- Larry Wall in <10209@jpl-devvax.JPL.NASA.GOV >

%
"And I don’t like doing silly things (except on purpose)."

-- Larry Wall in <1992Jul3.191825.14435@netlabs.com >

%
: And it goes against the grain of building small tools.
Innocent, Your Honor. Perl users build small tools all day lo ng.

-- Larry Wall in <1992Aug26.184221.29627@netlabs.com >

%
/ * And you’ll never guess what the dog had * /
/ * in its mouth... * /

-- Larry Wall in stab.c from the perl source code
%
Be consistent.

-- Larry Wall in the perl man page

Perl Training Australia (http://perltraining.com.au/) 37

Chapter 6. Advanced regular expressions

The fortune cookies are separated by a line which contains nothing but a percent sign.

To read this file one item at a time, we would need to set the delimiter to something other than the
usual\n - in this case, we’d need to set it to something like\n%\n .

To do this in Perl, we use the special variable$/ . This is called the input record separator.

$/ = "\n%\n";
while (<>) {

$_ now contains one RECORD per loop iteration
}

Conveniently enough, setting$/ to "" will cause input to occur in "paragraph mode", in which two
or more consecutive newlines will be treated as the delimiter. Undefining$/ will cause the entire file
to be slurped in.

undef $/;
$_ = <>; # whole file now here

Changing $/ doesn’t just change how readline (<>) works. It also affects the chomp function,
which always removes the value of $/ from the end of its argument. The reason we normally
think of chomp removing newlines is that $/ is set to newline by default.

It’s usually a very good idea to use local when changing special variables. For example, we
could write:

{
local $/ = "\n%\n";
$_ = <>; # first fortune cookie is in $_ now

}

to grab the first fortune cookie. By enclosing the code in a block and using local, we restrict the
change of $/ to that block. After the block $/ is whatever it was before the block (without us
having to save it and remember to change it back). This localisation occurs regardless of how
you exit the block, and so is particularly useful if you need to alter a special variable for a
complex section of code.

Variables changed with local are also changed for any functions or subroutines you might call
while the local is in effect. Unless it was your intention to change a special variable for one or
more of the subroutines you call, you should end your block before calling them.

It is a compile-time error to try and declare a special variable using my.

Special variables are covered in Chapter 28 of the Camel book, (pages 127 onwards, 2nd
Ed). The information can also be found in perldoc perlvar .

Since$/ isn’t the easiest name to remember, we can use a longer name byusing theEnglish module:

use English;

$INPUT_RECORD_SEPARATOR = "\n%\n"; # long name for $/
$RS = "\n%\n"; # same thing, awk-like

38 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

The English module is documented on page 884 (page 403, 2nd Ed) of the Camel book or
in perldoc English . You can find out about all of Perl’s special variables’ English names by
reading perldoc perlvar .

Exercise

1. In your directory is a file calledexercises/perl.txt which is a set of Perl-related fortunes,
formatted as in the above example. This file contains a great many quotes, including the ones in
the example above and many many more. Use multi-line regularexpressions to find only those
quotes which are from theperl man page . (Answer:exercises/answers/fortunes.pl)

Regexp modifiers for multi-line data
Perl has two modifiers for multi-line data./s and/m. These can be used to treat the string you’re
matching against as either a single line or as multiple lines. Their presence changes the behaviour of
caret (̂), dollar ($) and dot (.).

By default caret matches the start of the string. Dollar matches the end of the string (regardless of
newlines). Dot matches anything but a newline character.

With the /s modifier, caret and dollar behave the same as in the default case, but dot will match the
newline character.

With the /m modifier, caret matches the start of any line within the string, dollar matches the end of
any line within the string. Dot does not match the newline character.

my $string = "This is some text
and some more text
spanning several lines";

if ($string =~ /^and some/m) { # this will match because
print "Matched in multi-line mode\n"; # ^ matches the start o f any

} # line in the string

if ($string =~ /^and some/) { # this won’t match
print "Matched in single line mode\n"; # because ^ only match es

} # the start of the string.

if($string =~ /^This is some/) { # this will match
print "Matched in single line mode\n"; # (and would have with out

} # the /s, or with /m)

if($string =~ /(some. * text)/s) { # Prints "some text\nand some more text"
print "$1\n"; # Note that . is matching \n here

}

if($string =~ /(some. * text)/) { # Prints "some text"
print "$1\n"; # Note that . does not match \n

}

The differences between default, single line, and multi-line mode are set out very succinctly by
Jeffrey Friedl in Mastering Regular Expressions (see the Further Reading at the back of these notes
for details). The following table is paraphrased from the one on page 236 of that book.

Perl Training Australia (http://perltraining.com.au/) 39

Chapter 6. Advanced regular expressions

His term "clean multi-line mode" describes one in which eachof ^ , $ and. all do what many
programmers expect them to do. That is. will match newlines as well as all other characters, and^

and$ each work on start and end of lines, rather than the start and end of the string.

Table 6-2. Effects of single and multi-line options

Mode Specified with ^ matches... $ matches... Dot matches
newline

default neither/s nor /m start of string end of string No

single-line /s start of string end of string Yes

multi-line /m start of line end of line No

clean multi-line both/m and/s start of line end of line Yes

Modifiers may be clumped at the end of a regular expression. Toperform a search using “clean
multi-line” irrespective of case your expression might look like this

/^the start. * end$/msi

and if we had the following strings

$string1 = "the start of the day
is the end of the night";

$string2 = "10 athletes waited,
the starting point was ready
how it would end
was anyone’s guess";

$string3 = uc($string2); # same as string 2 but all in upperca se

we’d expect the match to succeed with both$string2 and$string3 but not with$string1 .

Back references

Special variables
There are several special variables related to regular expressions. The parenthesised names beside
them are their long names if you use the English module.

• $& is the matched text (MATCH)

• $‘ (dollar backtick) is the unmatched text to the left of the matched text (PREMATCH)

• $’ (dollar forwardtick) is the unmatched text to the right of the matched text (POSTMATCH)

• $1, $2, $3, etc. The text matched by the 1st, 2nd, 3rd, etc sets of parentheses.

All these variables are modified when a match occurs, and can be used in the same way that other
scalar variables can be used.

my ($match) = m/^(\d+)/;
print $match;

40 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Advanced regular expressions

or alternately...
m/^\d+/;
print $&;

match the first three words...
m/^(\w+) (\w+) (\w+)/;
print "$1 $2 $3\n";

You can also use$1 and other special variables in substitutions:

$string = "It was a dark and stormy night.";
$string =~ s/(dark|wet|cold)/very $1/;

When Perl sees you using PREMATCH ($‘), MATCH ($&), or POSTMATCH ($’), it assumes that
you may want to use them again. This means that it has to prepare these variables after every
successful pattern match. This can slow a program down because these variables are
"prepared" by copying the string you matched against to an internal location.

If the use of those variables make your life much easier, then go ahead and use them. However,
if using $1, $2 etc can be used for your task instead, your program will be faster and leaner by
using them.

If you want to use parentheses simply for grouping, and don’t want them to set a $1 style
variable, you can use a special kind of non-capturing parentheses, which look like (?: ...)

this only sets $1 - the first set of parentheses are non-capt uring
m/(?:Dr|Prof) (\w+)/;

The special variables$1 and so on can be used in substitutions to include matched textin the
replacement expression:

swap first and second words
s/^(\w+) (\w+)/$2 $1/;

However, this is no use in a simple match pattern, because$1 and friends aren’t set until after the
match is complete. Something like:

print if m{(t\w+) $1};

... will not match "this this" or "that that". Rather, it will match a string containing "this" followed by
whatever$1 was set to by an earlier match.

In order to match "this this" (or "that that") we need to use the special regular expression meta
characters\1 , \2 , etc. These meta characters refer to parenthesised parts ofa match pattern, just as
$1 does, butwithin the same matchrather than referring back to the previous match.

print if found repeated words starting with ’t’: ie "this th is"
(note, this contains a subtle bug which you’ll find in the ex ercise)
print if m{(t\w+) \1};

Perl Training Australia (http://perltraining.com.au/) 41

Chapter 6. Advanced regular expressions

Exercises

1. Write a script which swaps the first and the last words on each line.

2. Write a script which looks for doubled terms such as "bang bang" or "quack quack" and prints
out all occurrences. This script could be used for finding typographic errors in text. (Answer:
exercises/answers/double.pl)

Advanced exercises

1. Make your swapping-words program work with lines that start and end with punctuation
characters. (Answer:exercises/answers/firstlast.pl)

2. Modify your repeated word script to work across line boundaries (Answer:
exercises/answers/multiline_double.pl)

3. What about case sensitivity with repeated words?

Chapter summary

• Input data can be split into multi-line strings using the special variable$/ , also known as
$INPUT_RECORD_SEPARATOR.

• The /s and/m modifiers can be used to treat multi-line data as if it were a single line or multiple
lines, respectively. This affects the matching of^ and$, as well as whether or not. will match a
newline.

• The special variables$&, $‘ and $’ are always set when a successful match occurs.

• $1, $2, $3 etc are set after a successful match to the text matched by thefirst, second, third, etc sets
of parentheses in the regular expression. These should onlybe usedoutsidethe regular expression
itself, as they will not be set until the match has been successful.

• Special non-capturing parentheses(?:...) can be used for grouping when you don’t wish to set
one of the numbered special variables.

• Special meta characters such as\1 , \2 etc may be usedwithin the regular expression itself, to refer
to text previously matched.

42 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and
process manipulation

In this chapter...
Perl is a popular tool for system administration as it makes it extremely easy to call existing shell
scripts and tools to do your work.

In this chapter we will examine a number of ways that we can call external programs, and how we
can control their input and output.

Platform independence
A number of the methods we’ll cover below sacrifice portability for utility. This is because a large
number of the system commands you may wish to call from your programs are different between
operating systems. To counter this, there are a wide number of Perl functions and modules which
allow you to interact with the system in an operating system independent function. We recommend
that you use these where possible.

Exit values
Experienced shell programmers are familiar with the idea ofanexit valueor exit status. When a
command terminates, it can return an integer value to its parent, indicating success, failure, or other
states. Traditionally, a value of zero means success, and anything else indicates failure. The
reasoning behind this is that there is often only one way to succeed, but many ways to fail.

Later in this text we’ll discuss how to capture the exit valueof other commands. However if you
want your Perl programs to interact nicely with your shell scripts, then you’ll almost certainly want
to use Perl’sexit function to indicate success or value:

exit(0); # Exit with a value of ’0’.
exit; # The default exit value is ’0’.

exit(1); # Exit with a value of ’1’

exit causes our program to halt immediately and exit with the specified value. Theexit function
shouldn’t be used if there’s a chance that something else in your program may wish to catch and
interpret the error, for that the use ofdie is recommended instead.

Invoking shell commands using system

You can learn more about the system command by executing perldoc -f system

Perl Training Australia (http://perltraining.com.au/) 43

Chapter 7. System interaction, wrappers, and process manipulation

If you’re used to using the shell to execute commands or run other scripts, then you’re almost
certainly eager to do the same thing in Perl. Doing so couldn’t be easier, we just use thesystem

command:

system("echo Hello World"); # Use the shell to print a greeti ng

Perl always uses the standard shell on your operating system, regardless of what your own
preferences may be. That means that Perl will invoke /bin/sh -c on Unix systems, command.com

on Windows 95 lineage systems, and cmd.exe /x/d/c on Windows NT lineage systems.

On Windows (only) the PERL5SHELLenvironment variable can be set to determine which shell is
used.

Commands entered into system work the same as if you had entered them on the command line:

Search for errors in syslog
system("tail /var/log/syslog | grep -i ERROR");

Use notepad to edit a file
system("notepad example.txt");

Thesystem command will execute the command (or commands) specified, and wait for them to
finish before returning execution to Perl. The commands willshare their standard input, standard
output, and standard error with Perl.

Multiple argument system
Where possible it is generally better to use the multiple-argument version ofsystem . This version
assumes its first argument is the system command and that all others are arguments to that command.
These arguments are treated literally (not passed via the shell) and are therefore less open to security
issues.

When supplied with multiple arguments,system will completely bypass the shell. This is faster, and
can avoid unintentional interpretation of shell meta-characters:

Run ’cat’ on a file named ’ * .txt’. By avoiding the shell there
is no interpretation of shell meta-characters

system(’cat’, ’ * .txt’);

Run ’cat’ on all files ending in ’.txt’, but avoiding the she ll.
This uses Perl’s built-in glob() function:

system(’cat’, glob(’ * .txt’));

Run ’cat’ on a list of files, each name will be interpreted
literally.

system(’cat’, @filenames);

44 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process manipulation

Problems with system
Of course, there are problems that you can encounter when using system . To begin with, your
command might fail, either by not starting at all, or by returning some sort of error status in its exit
value.

After executing asystem command, Perl sets a few special variables. The$? variable packs up the
exit value of the process, as well as information on whether it was killed by a signal, and if it
dumped core.

There are a few special values for . If it’s equal to-1 , then your process never even started, and the
reason for this will be in the special variable$! . If it’s equal to zero, then your process ran to
completion and exited with a zero exit status, which usuallymeans it thought it was successful.

If $? is anything else, you have to do use a number of bit-masking and bit-shifting operations to
extract the required values:

system("some_command");

if ($? == -1) {
print "Couldn’t run some_command - $!\n";

} elsif ($? == 0) {
print "some_command ran successfully\n";

} else {
print "Exit value is ", $? >> 8, "\n";
print "Signal number is ", $? & 127, "\n";
print "Dumped core\n" if $? & 128;

}

Perl also has a few macros that can make dealing with system easier. These are both easier to
understand than the bit-masking operations, and more portable.

use POSIX qw(WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG);

system("some_command");

if (WIFEXITED($?)) {
print "Command terminated normally with exit value ",

WEXITSTATUS($?),"\n";
} elsif (WIFSIGNALED($?)) {

print "Command killed by signal ",WTERMSIG($?),"\n";
} else {

print "Command did not run, or terminated abnormally.\n";
}

Of course, having to do all that error checking every time youcall to the shell gets very bothersome.
Luckily, there’s an easier way.

IPC::System::Simple and autodie
Both theIPC::System::Simple module (available from the CPAN) andautodie can take the hard
work out of checking the return value from system commands:

use IPC::System::Simple qw(system);

system("some_command");

With IPC::System::Simple enabled, thesystem function will execute the command provided and
check the result. If the command fails to start, dies from a signal, dumps core, or returns a non-zero

Perl Training Australia (http://perltraining.com.au/) 45

Chapter 7. System interaction, wrappers, and process manipulation

exit status, thenIPC::System::Simple will throw an exception with detailed diagnostics. Unless
you take steps to prevent it, a failure from this command willcause your program to die with an
error. If you want to capture the error, you can do so:

The ’eval’ block allows us to capture errors, which
are then placed in $@. If any of the commands below
fail, the ’eval’ is exited immediately. This means if
we fail to backup the files, we won’t delete them.

eval {
system(’backup_files’);
system(’delete_files’);

};

if ($@) {
warn "Error in running commands: $@\n";

}

Theautodie pragma usesIPC::System::Simple underneath to provide the same changes tosystem

but with lexical scope (until the end of the current block, file, or eval). The same code as above could
be written as:

eval {
use autodie qw(system);

system(’backup_files’);
system(’delete_files’);

};

if ($@) {
warn "Error in running commands: $@\n";

}

When using either module, it’s possible to specify a range ofacceptable return values as a first
argument.

use IPC::System::Simple qw(system);

Run a command, insisting it return 0, 1 or 2:
system([0,1,2], "some_command");

Run a command and capture its exit value:
my $exit_value = system([0,1,2], ’some_command’);

Specify return values using the range operator:
my $exit_value = system([0..2], ’some_command’);

Just like regularsystem , therun command uses the standard shell when running a single command,
or invokes the command directly when called in a multiple argument fashion:

Run ’cat * .txt’ via the shell.
system(’cat * .txt’);

Run ’cat’ on the file called ’ * .txt’, bypassing the shell.
system(’cat’,’ * .txt’);

Run ’cat’ on all files matching ’ * .txt’, bypassing the
shell.
system(’cat’,glob(’ * .txt’));

46 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process manipulation

The IPC::System::Simple module also provides asystemx() command for running commands, but
whichneverinvokes the shell, even when called with a single argument.

You can read more about IPC::System::Simple at
http://search.cpan.org/perldoc?IPC::System::Simple and autodie at
http://search.cpan.org/perldoc?autodie.

Capturing a program’s output
system is great for calling processes which either don’t generate output, or which send their output
to files. But what if you want to run a command that normally prints to STDOUT? Running it with
system will work, but if you want to capture that output you’ll have to redirect it to a file, and then
open that file.... It’s a lot of unnecessary hard work. Fortunately Perl gives us a few other methods of
grabbing an external program’s output.

backticks/qx
Just like backticks inbash or sh , backticks in Perl can be used to execute an external processand
capture its output:

my $result = ‘finger pjf‘;

my $result2 = qx{finger $name};

qx{} is an alternative to using backticks. It has the same effect,but is easier to identify when using
fonts which represent forward and backticks similarly.

In a scalar context (as above) the whole return result will bereturned as a string with embedded
newlines. In a list context you will receive a list with one line of output per element.

my $directory = qx{dir}; # ’dir’ in a single string.

my @dir_lines = qw{dir}; # One line per element.

Backticksalwaysinvoke the shell, so be careful of unwanted shell meta-characters.

Piped open
Just as we can useopen for opening files for reading and writing, we can also useopen for opening
processes. After all, there is much similarity between printing to a filehandle, and sending data to a
process, or reading from a filehandle and reading data from a process.

open (my $ssh, "ssh $host cat $file |") or die "Can’t open pipe : $!";

while(<$ssh>) {
We can process the file in any way we like here.
In this particular case, we’ll simply print it to
our STDOUT.

print;
}

Perl Training Australia (http://perltraining.com.au/) 47

Chapter 7. System interaction, wrappers, and process manipulation

close $ssh or die "Failed to close: $! $?";

In the above example, our filehandle$ssh provides us input from the process.

When opening a process for writing, we need to set up a handlerto catch any SIGPIPEs. These
might be generated if we try to write to a pipe which has closed; for example if we opened a process
that doesn’t exist. We do this by adding subroutine reference to the special%SIGhash.

Set up a handler in case our pipe breaks, the process doesn’t
exist, or other error occurs.

local $SIG{PIPE} = sub { die "Pipe broke." };

Open process to pipe to
open(my $out, "| $process1") or die $!;

print {$out} "Some text";

close $out or die "Failed to close: $! $?";

It is important to be aware that the command provided may go via the shell. Thus it is essential to be
certain that any variables or data do not contain any unexpected shell meta-characters.

This construct cannot be used for both piping into and out of aprocess. For tips on how to achieve
that readperldoc perlipc andIO::Pipe .

Multi-arg open
To avoid passing the process command via the shell, it is possible to use a multiple argument version
of open just like we can withsystem andexec . Thus the above examples would become:

open (my $ssh, "-|", "ssh", $host, "cat", $file)

and

open(my $out, "|-", $process1) or die $!;

exec
To pass execution over to an external program after manipulating the environment we can useexec .
exec works very similarly tosystem with one key difference: code occurring in the file after the call
to exec will only be executed if the call fails.

exec is very useful if you’re writing awrapperprogram, something which performs a series of tasks
before executing some larger process. For example, you may wish to ensure that certain environment
variables are set before calling a given program. This also allows you to have the exact same
program and wrapper on a number of machines but each using appropriate environment variables.

use Config::General;
my %config = ParseConfig("config.txt");

Set up environment variables for Oracle
$ENV{TNS_ADMIN} = $config{tns_admin};
$ENV{ORACLE_HOME} = $config{oracle_home};
$ENV{LD_LIBRARY_PATH} = $config{ld_path};

48 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process manipulation

Run program which assumes environment is done
exec(’my_oracle_application’);

Just as withsystem , exec has both a single argument and a multiple argument version. When you do
not intend shell meta-characters to be interpreted, the multiple-argument version is recommended for
both speed and safety.

Example - Tape backups
Being able to call out to the shell and make use of other programs as components in our program,
gives Perl a lot of power. In the below example we write a basic(but effective) program that uses the
system’sdump command to make backups to tape. If the file/usr/local/etc/fulldump is found
then a full dump is performed and the tape is ejected. This provides a simple mechanism so that other
processes (such as a script running on a web server) can influence how our backup is performed.

The code below is optimised to be run from a scheduler such ascron that will forward any script
output to an administrator. It forwards the output of thedump command to STDOUT, and so ensures
that full dump reports are sent by mail each evening.

#!/usr/bin/perl -wT
use strict;

Clean our path
$ENV{PATH} = "/usr/local/sbin:/usr/sbin:/usr/bin";
$ENV{RSH} = "ssh";

These are the list of file systems we want to dump.
We can include extra options here; in our case
we specify the ’-L’ switch to add a tape label.

my @filesystems = (
’-L boot /boot’,
’-L database /mnt/database’,
’-L home /mnt/home’,

);

If this files exists, we want a full dump.
use constant FULLDUMPFILE => "/usr/local/etc/fulldump";

Which program should be use for tape control?
use constant MT => ’/bin/mt’;

Where is our dump command?
use constant DUMP => ’/sbin/dump’;

Default dump level. -1 is incremental.
my $DEFAULT_LEVEL = "-1";

If my full-dump file exists, then do a full dump instead.
if (-e FULLDUMPFILE) {

$DEFAULT_LEVEL = "-0";
}

@ARGV is our list of command line arguments. If we
don’t get a dump level on the command line, we’ll
use the default.

my $level = shift(@ARGV) || $DEFAULT_LEVEL;

Perl Training Australia (http://perltraining.com.au/) 49

Chapter 7. System interaction, wrappers, and process manipulation

We expect our dump level to always be a minus, followed
by a single digit. This is a simple check to ensure that
it’s not anything else.

($level) = $level =~ /^-(\d)$/;
defined($level) or die "No dump level available\n";

Dump each file system
foreach my $filesystem (@filesystems) {

system("$DUMP -$level $options 2>&1");
if ($?) { # Croak if there were problems.

die "\nErrors encountered! Entire dump halted.\n";
}
sleep 1;

}

If we had a full dump, clean up and eject the tape.
Otherwise we leave the tape in the drive.
if ($level eq "-0") {

system(MT, "offline");
unlink(FULLDUMPFILE);
print "Full dump successful. Tape ejected\n";

}

Sending signals
Sometimes we want to send a signal to another process, usually because we want it to terminate. We
can do this using Perl’skill function:

my $success = kill $signal, $process_id;

If the signal is zero then it simply checks that the given process is alive, returning a true value if it is,
and a false value if not.

On Unix systemskill sends the specified signal to the process in question. You canuse either the
signal name (without the leading ’SIG’) or its number. Specifying a negative process_id sends the
signal to all processes within that group:

Both of these statements send a SIGHUP to the given
process.

kill ’HUP’, $process_id;
kill 1, $process_id;

Sends a SIGHUP to the given process and all other
members of its process-group (usually its children).

kill ’HUP’, -$process_id;

To get a list of signals available on a Unix system, use the shell commandkill -l .

On a Windows systemkill will terminate the given process, causing it to exit with a status
identified by the first argument:

Windows-only, cause $process_id to exit with a value
of ’42’

50 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. System interaction, wrappers, and process manipulation

kill 42, $process_id;

Sending a value of zero to a process simply returns whether ornot it’s still alive, just like in Unix.

Chapter summary
This chapter covered how to call external programs and send data to them, or receive data from
them. It also covered sending signals to other processes. For more information on this material read
chapter 16 of the Perl Cookbook.

Perl Training Australia (http://perltraining.com.au/) 51

Chapter 7. System interaction, wrappers, and process manipulation

52 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. The command line

In this chapter...
This chapter explores some of Perl’s command line options. To find out more about these read
perldoc perlrun .

Once off scripts
Occasionally we find a task that only ever needs to be done once. Perhaps we need to change a file so
that all stringsA002 becomeB005, or we want to find out how many times a particular IP address
accesses the web-server today. In these cases, rather than use a throw-away script, we may be able to
write our script directly onto the command line.

Keep in mind as you do this though, that sometimes throw-awayscripts turn into programs that
become essential to the business. If you think you’re ever likely to run this same program again, or if
it is non-trivial, write it into a program, comment it, use strict and warnings, as well as the
appropriate modules and keep it. You’ll be glad you did.

Using the execute switch (-e) to convert from
epoch-time

Let’s say that you’ve got a timestamp inseconds from the epoch; the number of seconds since
midnight, 1st January, 1970 GMT. This time format is used by anumber of applications, and has the
advantage of being an absolute measurement of time that is independent of timezone or daylight
savings. It’s also completely useless to most humans. By default, thesquidproxy server records
times in seconds from the epoch.

We can use Perl to convert epoch-time to local time very easily, and we can do so on the
command-line using Perl’sexecute switch, -e :

perl -e ’print scalar(localtime(1150946643)).qq{\n}’;

Under Perl 5.10, we can use the capital-E switch to execute code, but turning on all the new 5.10
features first:

perl -E ’say scalar localtime(1150946643)’

When using the -e and -E switches, you need to be very careful of interactions with the shell.
Most Unix shells pass single-quoted strings to the application without alteration. DOS and
Windows shells, on the other hand, use double quotes for this purpose:

Unix, single-quotes
perl -e’print scalar(localtime(1150946643)).qq{\n};’

Windows, double-quotes
perl -e"print scalar(localtime(1150946643)).qq{\n};"

Perl Training Australia (http://perltraining.com.au/) 53

Chapter 8. The command line

In these notes we’ll be using single-quotes when working on the command-line. If you’re working
on a Windows system, then you’ll need to change these to double-quotes before trying any
examples.

Theqq{\n} represents a newline character, which you may more commonlysee written as"\n" . We
usescalar to forcelocaltime into ascalar context. Without this, Perl would instead return us a
long list consisting of the year, month, time, hour, minute,second and so forth. Not exactly what
we’re after.

When writing a script on the command line, it’salwaysrecommended that you useq{} for single
quotes, andqq{} for double quotes. This avoids any unwanted interaction with the shell, and can also
make your code visually easier to read.

To perform multiple operations, just use semi-colons between your statements, in the same way that
you do in a program:

perl -e ’foreach(< * .txt>) { s/.txt$//; rename(qq{$_.txt},qq{$_-2006.txt}) }’

This moves all files with a.txt extension to instead end with-2006.txt .

Script-less programming
You may have a snippet of Perl that you wish to execute, perhaps from an e-mail or web page, but
which you don’t want to save as a permanent program. In that case you can invoke Perl and give it a
script on STDIN:

% perl
foreach(< * .txt>) {

s/.txt$//;
rename("$_.txt","$_-2006.txt");

}

This will tell you of syntax errors immediately, but script execution will not start until you send Perl
anend-of-filecharacter, or more commonly known asEOF. On Unix systems this is done by hitting
CTRL-Dat the start of a line, and under Windows is done by hittingCTRL-Zat the start of a line.

If your program accepts input from STDIN, you will need to provide its input after you’ve sent the
EOFcharacter and then sendEOFagain. In this case, you’re almost certainly better off writing your
code into a file.

Printing switch (-p)
Using-p tells Perl to act as a stream editor. It will read input from STDIN, or from files mentioned
on the command line, and place each line of input into$_. The body of your program is then
executed, and the contents of$_ are printed. It’s most commonly used with Perl’s substitution
operators/// , which is covered in the regular expressions chapters of this course.

The following command line snippet can be used to correct a common spelling mistake in one of our
documents:

perl -pe ’s/freind/friend/g’ essay.txt > spellchecked-es say.txt

It’s the same as writing:

54 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. The command line

while(<>) {
s/freind/friend/g;
print;

}

As a more advanced example, the following snippet can be usedto convertseconds from the epoch
time-stamps into human readable dates forsquidlogfiles:

perl -pe’s/^([\d.]+)/localtime($1)/e’ access.log

It works by finding a number at the start of each line (the timestamp), and replacing it with the result
of calling localtime on that timestamp.

Non-printing switch (-n)

perl -ne ’print if /perltraining\.com\.au/’

Using-n makes Perl act almost the same as-p . However, theprint line is excluded. This allows us
to write code like the above which only prints when we want it to. It is equivalent to:

while(<>) {
print if /perltraining\.com\.au/;

}

Module switch (-M)
Perl has a great number of useful modules, and we may wish to use these on command-line
programs. We can load them quickly and easily using the-M switch. The following example prints
what Perl can find in our environment usingData::Dumper :

perl -MData::Dumper -e ’print Dumper(\%ENV);’

Multiple modules can be used by including multiple-M flags.

If you need to provide options to the module, you can do so as follows:

perl -Mautodie=open,close -e ’open(my $file, q{> /tmp/foo });
print {$file} qq{12345\n};’

The above program will die with an error if theopen fails, even though we are not explicitly catching
this error. This is because of our use of theautodie module. It is equivalent to:

use autodie qw(open close);
open(my $file, q{> /tmp/foo});
print {$file} qq{12345\n};

In-place switch (-i)

perl -i -pe ’s/freind/friend/’ file
perl -i.old -pe ’s/freind/friend/’ file

Perl Training Australia (http://perltraining.com.au/) 55

Chapter 8. The command line

Using-i on its own allows you to edit the file in place, overwriting theoriginal version. This can be
dangerous, as a bug in your program can result in data-loss, and if your program terminates
unexpectedly your file can be left in an inconsistent state.

A better solution is to provide an argument to the switch:-i.old . This creates a backup copy of the
original file file.old and then overwrites the original.

This is equivalent to:

mv file file.old
perl -pe ’s/freind/friend/’ file.old > file

If your operating system or file-system does not allow an opened file to be removed, then you
must specify a backup extension when using -i . In particular, Windows systems always require
an extension.

If the backup file contains an asterisk, then it is replaced with the current filename. This allows you
to add aprefix instead of a suffix if needed. For example:

perl -i’badly_spelled_ * ’ -e’s/freind/friend/’ file

would create a backup calledbadly_spelled_file . You can get fancy and place the asterisk in the
middle of the backup name, or even have multiple asterisks ifyou prefer.

Autosplit switch (-a)
-a is Perl’s autosplit switch. When using autosplit (with-n or -p), Perl automatically does a split on
whitespace and assigns the result to the@Fvariable.

Let’s say that we want to parse the output ofls -l from a Unix system. It consists of a series of
lines in the following format:

-rw-r--r-- 1 pjf pjf 10201 Jul 17 13:52 command.pod
-rw-r--r-- 1 pjf pjf 17739 Jul 17 15:51 command.sgml
-rw-r--r-- 1 pjf pjf 1320760 Jul 18 14:57 sysadmin.ps
-rw-r--r-- 1 pjf pjf 2010 Jul 14 17:31 sysadmin.sgml

If we want to print all lines which have a file-size greater than 1MB we could use:

ls -l | perl -ane ’print if $F[4] > 1_000_000;’

Note that Perl always counts fields starting from zero. The above code run over our sample input
would display the single line :

-rw-r--r-- 1 pjf pjf 1320760 Jul 18 14:57 sysadmin.ps

The above Perl code is equivalent to:

while (<>) {
our @F = split(" ", $_, 0);

print if $F[4] > 1_000_000;
}

56 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. The command line

Note that the0 as a final argument tosplit means that empty fields are simply discarded; the effect
of this is that any sequence of space characters is considered a seperator. You can also use the-F

switch can be used to specify an alternative pattern on whichto split.

Parsing the results of ls -l to get file information is not a recommended way to gain
information about files. It’s both slow and prone to error. A better way is to use Perl’s in-built stat

function, or the file test operators which are covered in the directories chapter of this course.

You could use an example similar to the above if you did not have direct access to the
filesystem, such as the output of ls -l stored in a file.

Other switches
Perl has many other switches. Below are some common ones.

Check switch (-c)
perl -c program.pl

-c causes Perl to check the program for syntactic errors and to exit without executing the main body
of code. Code inBEGIN andCHECKblocks, as well asuse lines will still be executed.

Warnings switch (-w)
perl -w program.pl

The-w switch runs your program with warnings turned on. Running with warnings helps catch
common mistakes, and is highly recommended.

Debugging switch (-d)
perl -d program.pl

Runs the program under the Perl debugger.

You can learn more about the Perl debugger by using perldoc perldebug

Include switch (-I)
perl -I/home/pjf/perl/lib/ program.pl

Perl Training Australia (http://perltraining.com.au/) 57

Chapter 8. The command line

Specifies which additional directories should be searched when looking for modules. This modifies
Perl’s special@INCvariable.

Taint switch (-T)
perl -T program.pl

Turns on taint mode. Any input from outside the program must be cleaned before being used to
cause effects outside the program. For example data received from a user must be cleaned before
being passed as an argument to a system call.

We’ll cover taint mode in more detail later in the course.

To learn more about Perl’s taint mode, read Perl Training Australia’s Perl Security course
manuals available at http://perltraining.com.au/courses/perlsec.html and Perl’s security
documentation at perldoc perlsec .

Chapter summary
Perl’s command line interface makes it a great filter when passing the output of one program to
another with a little editing on the way. It also makes it easyfor us to perform basic tasks without
having to write a program for it.

58 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

In this chapter...
Many system administrators are familiar with shell-based tools when it comes to filesystem
manipulation, and Perl makes it very easy to integrate with existing shell commands. Unfortunately
calling out to the shell is comparatively slow, difficult to debug, and can be operating-system
dependent. Luckily Perl comes with built-in functions for filesystem manipulation, which are fast,
cross-platform, and provide better diagnostics. We’ll be covering them in this chapter.

This chapter covers how to perform common filesystem operations in Perl. To find out more about
these functions readperldoc -f function or where the function is provided by a module:perldoc

Modulename .

More information about writing cross-platform code can be found in perldoc perlport .

Directory separators
Different operating systems have different directory separators. Unix systems use forward-slash (/),
DOS and Windows uses backslash (\), and MacOS 9 systems use a colon (:).

Perl interprets a forward-slash as a directory separator onbothUnix and Windowssystems, and we’ll
be using forward-slash as the directory separator throughout these notes. Using a forward-slash also
avoids any problems where Perl may interpret a backslash as ameta-character, such as using "\n"
for a newline.

For code that is truly independent of filesystem considerations, we’ll examine theFile::Spec

module later in this chapter.

Working with files

Copying, moving and renaming files
One of the most common filesystem operations is that of copying or moving files. Perl comes with
theFile::Copy module that provides a portable, cross-platform way to copyand move files.

use File::Copy;

Copy one filename to another.
copy($existing, $new) or die "Failed to copy: $!";

Copy the contents of a file to STDOUT.
copy($existing, \ * STDOUT) or die "Failed to copy: $!";

Move (rename) a file.
move($old_location, $new_location) or die "Failed to move : $!";

Perl Training Australia (http://perltraining.com.au/) 59

Chapter 9. Filesystem analysis and traversal

If you’re copying from one filename to another, then under VMS, OS/2, Win32, and MacOS Classic
File::Copy will attempt an attribute-preserving system copy.

Perl also has an in-built rename function, which is a thin wrapper around any system call
provided by the operating system:

rename($old_name, $new_name) or die "Failed to rename: $!" ;

Be aware that behaviour of this function varies significantly depending on the system
implementation. For example, it may not work across file system boundaries. In many cases
File::Copy ’s move function provides a more portable and reliable alternative.

For more information on copying files, see perldoc File::Copy

Deleting files
Perl has an in-built function calledunlink for deleting files.

unlink $file or die "Failed to remove $file: $!";

unlink can be passed multiple files, and returns the number of files successfully deleted. It’s
recommended that you delete files one at a time, so if a failuredoes occur you knowwhichfile failed
to be deleted:

foreach my $filename (@list_of_files) {
unlink($filename) or warn "Could not remove $filename - $!" ;

}

unlink will not delete directories, seermdir later in these notes.

Some filesystems, particularly under VMS, keep multiple versions of files. Thus a portable method
to make sure all copies of a file are removed is to use:

1 while unlink "file";

Finding information about files
To find out information about files we can use the file-test operators. These are similar to the ones
used by thebash shell, and a full list can be found inperldoc -f -x.

if(-r $file) {
print "$file is readable.\n";

}

if(-e $file) {
print "$file exists.\n";

}

Perl also has astat function that returns a large amount of information on a file at once.

60 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

You should be mindful that while the file-test operators willprovide you with information about each
file at the current time, this may change as your program is running. It would be foolish to assume
the size of a file is constant if you know it to be a logfile that isbeing actively written.

Open the file only if...

Let’s say that you wish to write a new file, but your program should never overwrite an existing one.
You could write code that looks like this:

DANGER! This code contains a race condition, and
should not be used.

if (not -e $filename) {
open(my $fh, ">", $filename) or die "Can’t open $file - $!"

}

However that code contains a problem. In between testing to see if our file exists, and opening the
file, another process may create a file with that name. Perhapsit’s because we’re on a busy system, or
our program is running multiple times, or because someone isintentionally trying to trick our system
into doing something it should not. In any case we run the riskof clobbering an existing file. On a
filesystem that allows symbolic links, we may even clobber anexisting file in an entirely different
location.

A much better way of opening files when we need careful controlis to use Perl’ssysopen function:

use Fcntl;

Open a NEW file for writing. This fails if the
file already exists, or is a symlink.
sysopen(my $fh, $filename, O_WRONLY|O_CREAT|O_EXCL)

or die "Failed to open $outfile: $!";

The reasons for usingsysopen are twofold. Firstly, it’s faster, we’re performing one operation
instead of two. The second, and more important reason, is that it’s much more secure. The
O_CREAT|O_EXCLflag combination tells Perl that itmustcreate a new file, it can’t open an existing
file for writing, nor may it chase a symlink. This means we don’t run the risk of accidently
clobbering an existing file, even on a very active system.

You can learn more about race conditions and sysopen in Perl Training Australia’s Perl
Security course materials at http://perltraining.com.au/courses/perlsec.html .

Temporary files
Opening a temporary file is a very common operation. In line with Perl’s design of making "simple
jobs easy, hard jobs possible", opening a temporary file securely in Perl is a very easy task.

In many situations, there’s no need to have a temporary file with an actualname. If a file is
temporary, and is only to be manipulated by the current process and its children, then it’s possible to
use that file without referring to the file system at all.

The lack of name has numerous advantages. The file is automatically cleaned up when the last
filehandle to it is closed. It’s also possible to keep very tight controls on what can access that file, as
it’s not accessible via the regular file system.

Perl Training Australia (http://perltraining.com.au/) 61

Chapter 9. Filesystem analysis and traversal

Creating an anonymous file in Perl version 5.8.0 and beyond isa very simple operation usingopen :

my $fh;
open($fh,"+>",undef) or die "Could not open temp file - $!";

Using an undefined filename indicates to Perl that an anonymous temporary file is desired. This can
be written to and read from just like a normal file, however youwill need to use theseek() function
to read the contents of the file once you’ve written to it.

You can also use theFile::Temp module under any version of Perl to safely create temporary files:

use File::Temp qw(tempfile);

my $fh = tempfile() or die "Could not open temp file - $!";

print {$fh} "This is written to my tempfile\n";

TheFile::Temp module provides an excellent cross-platform interface forworking with temporary
files, and contains a number of additional safety checks to ensure that files are created in a secure
fashion. TheFile::Temp module also provides ways of securely creating temporary directories, and
safely deleting temporary files.

File locking
Perl comes with a portable locking mechanism calledflock, which is short for file-lock. This allows
us to applyadvisorylocks to any filehandle.

use Fcntl qw(:flock);

flock($fh, LOCK_EX) or die "Cannot get an exclusive lock: $! ;

or

flock($fh, LOCK_SH) or die "Cannot get a shared lock: $!;

use our locked file
closing releases the lock

close $fh;

Perl’s flock mechanism can be used to lock any filehandle, including sockets and streams likeSTDIN.
If the lock fails, or your operating system does not support locking on the requested filehandle, flock
will return false.

Locks in Perl areadvisory, meaning that other processes can ignore them if they wish. In fact, most
operating systems only have advisory locking of files, or only support mandatory locking in very
special cases. There are good reasons for this; on a Unix system a mandatory lock on the
/etc/passwd file by a hung or malicious program could potentially preventaccess to the entire
system.

By default, flock will wait indefinitely until a lock is obtained, however we can request a lock be
made in a non-blocking fashion by using the special constantLOCK_NB:

use Fcntl qw(:flock);

if(flock(FILE, LOCK_EX|LOCK_NB)) {
we got the lock
do something with it

}

62 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

While Perl allows us to unlock files by using theLOCK_UNconstant, its use is often a mistake.
Normally when we’re finished with a file it is best to close it, as this automatically releases the lock,
and avoids any possibility of us accidently reading or writing to an unlocked file. Under older
versions of perl unlocking a file did not always flush any output buffers, and this could result in
subtle errors as data would often be written to the (open but now unlocked) file on program exit.

Locking your process

It’s common to see external lock files being used to ensure that only a single instance of a program is
running on a machine. This has the additional overhead of creating and tidying up the lock file.
Luckily for us, this is rarely needed in Perl.

We can take advantage of the fact that our program’s source code will be stored in a file, and that file
must be accessible to the Perl interpreter in order for it to run. Rather than locking an external file, we
can simply lock our own source code, the filename of which can be found in the special variable$0.

use Fcntl qw(:flock);

open(SELF,"<",$0) or die "Cannot open $0 - $!";

flock(SELF, LOCK_EX|LOCK_NB) or die "Already running.";

If this causes any problems, Perl programs also allow data tobe stored at the end of their source
code, in a special__DATA__ section. If this exists, the data is accessible through a special filehandle
called DATA. We can use this as an alternative method to lock our own program.

use Fcntl qw(:flock);

flock(DATA, LOCK_EX|LOCK_NB) or die "Already running.";

...

__DATA__
Don’t remove this data section!

This is a less optimal solution as theDATAsection must be at the end of your code, and is therefore a
long way away from your locking code. If the__DATA__ section does not exist,flock will fail with
our messageAlready running rather than a warning thatDATAdoesn’t exist.

File Permissions
Available file permissions are not consistent across operating systems. In Unix-based operating
systems, file permissions are represented as octal numbers.1 stands for execute, 2 for write, 4 for
read. These values are added to indicate multiple permissions with the common values being 5 - read
and execute, 6 - read and write, 7 - read, write and execute.

These permissions are then applied to cover "owner", "group" and "other" permissions. Thus a file
with permissions of0750 means that the owner can read, write and execute it, people inthe same
group as the owner can read and execute it, but everyone else has no permission to do anything.

This permission model is also used for Unix directories. To add something to a directory you need to
be able to write to it, to see a listing you need to be able to read it, and to enter it at all you need to be
able to execute it.

Perl Training Australia (http://perltraining.com.au/) 63

Chapter 9. Filesystem analysis and traversal

Many of Perl’s file permissions functions assume this model.The various Unix/POSIX compatibility
layers attempt to map these to meaningful values for other operating systems, but sometimes there is
no good mapping. Readperldoc perlport for information on your operating system.

When specifying permissions in Perl, it is important to do so in octal . Perl considers a number
to be an octal number if it starts with a zero, such as 0644 or 0755 . Forgetting the leading zero
will have Perl interpret the number as decimal , and you will end up with very different
permissions than what you expect.

Changing permissions
chmod changes the permissions on a list of files. Be aware that Unix-like permissions do not make
sense on all operating systems.

chmod 0775, $file_a or die "Failed to change permissions: $! ";

or a list:
chmod 0775, $file_b, $file_c;

Default permissions (umask)
Theumaskrepresents permission bits that areneverset when creating a file. Perl’sumask function
can be used to both get and set the umask used by the current process.

my $current = umask();

umask 0022;

Theumaskis applied to all files that are created. For example, the following code will create a new
file with permissions 0755:

use Fcntl;

umask 0022;

sysopen(FILE, "runme", O_WRONLY|O_CREAT|O_EXCL, 0777);

If no umask is set in the file, then the process owner’s umask will be used. You shouldalwayshave a
good reason when setting theumaskin your program, as this takes away the user’s choice in setting
their own.

Changing ownership
my ($login,$pass,$uid,$gid) = getpwnam($user)

or die "$user not in passwd file";

chown $uid, $gid, $file;

The above snippet looks up a given username, to get their UID and GID from the password file. This
is then used to change the ownership and group ownership of a file to that user.

64 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

chown is not implemented on a number of operating systems, and evenwhen it is you can rarely
change the owner of a file unless you’re the superuser. Use of this function will reduce the portability
of your program. For more information readperldoc perlport andperldoc -f chown

Links
For filesystems that support links, Perl has three functionsfor link manipulation.

To create a symbolic link in Perl, use thesymlink function:

symlink $old_file, $new_file or die "Failed to create symli nk: $!";

To check that your system allows symlinks:
$symlinks_ok = eval { symlink("",""); 1 };

To create a hard link, use thelink function:

link $old_file, $new_file or die "Failed to create link: $!" ;

To read the destination name of a symbolic link, use thereadlink function:

my $linked_to = readlink $link;

Working with directories

Reading directories
There are two ways to read the contents of a directory in Perl.opendir and its associatereaddir

give you very fast access to all files including dot files. Files are returned in "file-system order"
which may not be sorted and only filenames (and not paths) are returned.

opendir(HOMEDIR, $ENV{HOME}) or die "Failed to read $ENV{H OME}: $!";
my @files = readdir(HOMEDIR);
closedir(HOMEDIR);

Newer versions of Perl (5.6.1 and beyond) support opening
directory handles into scalars.

opendir(my $home, $ENV{HOME}) or die "Failed to read $ENV{H OME}: $!";
my @files = readdir($home);
closedir($home);

In either case, once we have our filenames, we can then proce ss
them. He we walk through each one and print the filename:

foreach my $file (@files) { print "$file\n"; }

Alternately, we can useglob .

my @files = glob(" * .txt"); # files ending with .txt

or less commonly:
my @files = < * .txt>;

Perl Training Australia (http://perltraining.com.au/) 65

Chapter 9. Filesystem analysis and traversal

Glob is slower, returns the files in ascii-betical order, with full path names and does not include dot
files (such as.forward). On the other hand, readdir returns file names in file system order (which
may not be sorted).

Sub-directories are considered to be files.

Returning normal files

Often when we process a directory we want to skip over sub-directories, we can do this with the file
operators from above.

opendir(my $home, $ENV{HOME}) or die "Failed to read $ENV{H OME}: $!";

foreach my $file (readdir($home)) {
next unless -f $file;

process file
}

Creating and removing directories

mkdir $new_dir or die "Failed to make $new_dir $!";
mkdir $new_dir, $mask or die "Failed to make $new_dir: $!";

rmdir $new_dir or die "Failed to remove $new_dir: $!";

For mkdir , if the mask is omitted it defaults to0777 , with modifications fromumask if applicable.
rmdir will fail if the directory is not empty.

To create or remove a directory tree we can instead useFile::Path .

use File::Path;

mkpath(’shop/inventory/shelf’);

mkpath(’shop/inventory/shelf’, 0, $mode);

rmtree(’shop/inventory/shelf’);

mkpath returns a list of all directories created upon success and throws an exception on failure.
rmtree behaves like the Unixrm -r command; deleting both files and directories in the tree. Upon
success it returns the number of files deleted. Symlinks are not followed.

For more information aboutmkpath andrmtree readperldoc File::Path .

Directory paths
Different operating systems have different directory separators. This can make writing portable code
much harder. FortunatelyFile::Spec can be used to work with directories in an operating system
independent manner.

use File::Spec;

my $dir = File::Spec->catfile(’shop’, ’inventory’, ’shel f’, ’price.txt’);
print $dir;

66 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

Alternately split the path into parts.
my ($volume,$directories,$file) = File::Spec->splitpat h($dir);

The print will generate:

shop/inventory/shelf/price.txt

on Unix and Unix-like operating systems.

shop\inventory\shelf\price.txt

on Win32 operating systems.

shop:inventory:shelf:price.txt

on Mac OS 9.

Directory representations

Just as different operating systems have different separators, they also have different representations
for other common directories.File::Spec makes many of these more manageable:

use File::Spec;

my $current_dir = File::Spec->curdir(); # ’.’ on both Unix a nd Win32
my $updir = File::Spec->updir(); # ’..’ "" ""
my $root_dir = File::Spec->rootdir(); # ’/’ Unix, ’\’ Win32

my $null_device = File::Spec->devnull(); # /dev/null on Un ix
nul on Win32

my $tempdir = File::Spec->tmpdir(); # /tmp on both

Preventing path traversal attacks

A common issue with accepting file names from untrusted usersis avoiding path traversal attacks.
For example consider the following:

$filename = "../../../../etc/passwd"; # assume came from u ser

write to the file specified by the user
open(FILE, ">", $filename) or die "Failed to open file $file name: $!";

Oops! We might just have clobbered/etc/passwd ! Fortunately we can useFile::Spec to spot
attempts to climb up the directory structure in an operatingsystem independent manner:

use File::Spec;

$filename = "../../../../etc/passwd"; # assume came from u ser

If we have an absolute path, then complain.
if(File::Spec->file_name_is_absolute($filename)) {

die "Absolute path not allowed";
}

If our path contains any "parent directory" elements,
then complain.

Perl Training Australia (http://perltraining.com.au/) 67

Chapter 9. Filesystem analysis and traversal

my $updir = File::Spec->updir();
if (grep {$_ eq $updir} File::Spec->splitdir($filename)) {

die "Parent directories not allowed in pathnames."
}

write to the file specified by the user
open(FILE, ">", $filename) or die "Failed to open file $file name: $!";

Changing directories
use File::Spec;
chdir(File::Spec->updir()) or die "Failed to change up a di r: $!";

Changes your program’s current working directory, if possible. This changes the working directory
for the rest of your program and for all processes your program may spawn. Be aware that this will
have no effect on your current working directory once your program terminates.

Current working directory, absolute path for files
use Cwd;
my $pwd = getcwd();

use Cwd qw/abs_path/;
my $pwd = abs_path($file);

getcwd returns the current working directory for your program whencalled.

abs_path returns the absolute path of the given file.

File::Find
It is possible to use Perl’sopendir andreaddir functions to recurse through directories; but it’s not
easy or elegant. Fortunately there’s a module calledFile::Find which replaces the need. This
emulates Unix’sfind command but is portable across operating systems.File::Find comes
standard with typical Perl installs.

use File::Find;
my $YEAR = 365; # Days in year (good enough for this)
my $SIZE = 100_000; # 100k bytes

For each directory passed in on the command line
foreach my $dir (@ARGV) {

find (\&find_old_music, $dir);
}

All music which hasn’t been accessed for a year, 100k+ in siz e
sub find_old_music {

if(/(\.(mp3|ogg)$/i and -A > $YEAR and -s > $SIZE) {
print "$File::Find::name\n";

}
}

68 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Filesystem analysis and traversal

Our \&find_old_music argument in our call tofind is a subroutine reference. This subroutine will
be called for each fileFile::Find finds (including directories and other special files). When the
find_old_music subroutine gets called it has three variables set up:

$_

Set to the name of the current file.

$File::Find::dir

Set to the current directory.

$File::Find::name

Full name of the file. Equivalent to$file::Find::dir/$_ .

File::Find automatically changes your current working directory to the same as the file you are
currently examining.

File::Find::Rule
Some people find the call-back interface toFile::Find difficult to understand. Further, storing both
your rules and your actions in the call-back subroutine hides a lot of detail from someone glancing
over your code. As a result, an alternative exists calledFile::Find::Rule .

use File::Find::Rule;
my $YEAR_AGO = time() - 365 * 24 * 60 * 60; # Year ago in secs
my $SIZE = 100_000; # 100k bytes

my @old_music = File::Find::Rule->file()
->name (’ * .mp3’, ’ * .ogg’)
->atime("< $YEAR_AGO")
->size ("> $SIZE")
->in (@ARGV);

Do something with @old_music files

atime actually returns the file access time in seconds since the 1stJanuary 1970. Thus->atime("<

$YEAR_AGO") says that it was last accessed at a point that was earlier in time than a year ago was.

Chapter summary
This chapter covered portable methods to work with files and directories with some attention paid to
portability issues. For more information about these subjects please read Chapter 7 of the Perl
Cookbook.

Perl Training Australia (http://perltraining.com.au/) 69

Chapter 9. Filesystem analysis and traversal

70 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Mail processing and filtering

In this chapter...
Email is an excellent method to send non-urgent informationto any number of recipients. This
chapter deals with two common problems: how to send email from programs, to let us know how
things went, and how to deal with the already incredible amount of mail we currently receive.

Sending mail
A very easy module for sending email isMail::Send . By default it will search for your mail
executable and use the first it finds. You can change this behaviour by explicitly setting which mailer
you wish to use in the call toopen . Mail::Send is part ofMailTools .

use Mail::Send;
my $msg = new Mail::Send;
my $time = localtime();

$msg->to(’user1@example.com’, ’user2@example.com’);
$msg->cc(’user3@example.com’);
$msg->bcc(’user4@example.com’);
$msg->subject("Webserver is down! ($time)");

my $fh = $msg->open; # use the default mailer on the system

print {$fh} "Web server response for page: $page was: $respo nse."

$fh->close; # complete the message and send it

With attachments
Mail::Send doesn’t handle attachments. For simple work with attachments, you may want to look at
MIME::Lite .

use MIME::Lite;

Create a new multi-part message:
$msg = MIME::Lite->new(

From => ’user1@example.com’,
To => ’user2@example.com’,
Cc => ’user3@example.com, user4@example.com’,
Type => ’multipart/mixed’
Subject => "Web server is down! ($time)",

);

Attachments
Text part
$msg->attach(

Type => ’TEXT’,
Data => "Web server response for page: $page ".

"was: $response." .
"See the attached image for recent load.",

);

Perl Training Australia (http://perltraining.com.au/) 71

Chapter 10. Mail processing and filtering

Attach Image.
$msg->attach(

Type => ’image/gif’,
Path => ’/var/www/data/load.gif’,
Filename => ’load.gif’,
Disposition => ’attachment’

);

$msg->send;

Filtering mail
There’s a good chance you receive lots of e-mail. If you’re a system administrator with machines that
send you status reports, or the designated contact person for a project or business, then there’s a
chance that you’ll receive a truly amazing amount of e-mail.

Managing all that e-mail can be hard. There are lots of solutions that can do basic operations, like
sorting into folders, but sometimes you’ll want to perform more powerful operations. Maybe you
need to send an SMS when an important e-mail arrives. Maybe you need to send different vacation
messages to your work colleagues than to your friends. Maybeyou want to strip incoming files and
place them somewhere on the filesystem. Whatever you want, you may find that existing tools don’t
quite do the job.

Luckily for us, it’s quite easy to allow Perl to control the delivery of e-mail.

Mail::Audit
Simon Cozen’sMail::Audit module has a simple-to-use interface, understands a great many
mailbox formats, and possesses a surprising array of plug-ins.

Mail::Audit is most commonly used as a mail-filter, with incoming mail being delivered to a
program you’ve written instead of to your regular mailbox. With many common Unix mailers you
can do that by putting the following in your~/.forward file:

|~/bin/my-mail-filter

Although if you’re usingqmail , you’ll want to edit your.qmail file instead to add:

preline ~/bin/my-mail-filter

Setting a program as your local delivery agent depends upon the mail transport agent installed on
your system. It’s alsostronglyrecommended that you test your program carefully before enabling it.
Losing mail will ruin your day.

UsingMail::Audit is easy. We start by loading the module, and creating a newMail::Audit object.
This automatically reads our mail (fromSTDIN by default), and parses it:

#!/usr/bin/perl -w
use strict;

use Mail::Audit;

my $mail = Mail::Audit->new(emergency=>"~/emergency_mb ox");

72 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Mail processing and filtering

You’ll note that we’ve specified anemergencymailbox. Should anything go horribly wrong,
Mail::Audit will write the message here. If this isn’t set thenMail::Audit will try to hand the mail
back to your mail transport agent if things go wrong.

Once we’ve got aMail::Audit object, delivering our mail is easy:

Mail containing ’root’ in the from line goes into a
maildir folder. Note the trailing slash.

$mail->accept("~/Maildir/.root/") if $mail->from =~ /ro ot/i;

Mail with ’joke’ in the subject gets delivered to a ’jokes’
mbox file. Note the is NO trailing slash.

$mail->accept("~/Mail/jokes") if $mail->subject =~ /jok e/i;

Everything else goes to our default mailbox:
/var/spool/mail/username

$mail->accept();

Mail::Audit understands bothmboxandMaildir mailboxes, and will try to auto-detect the format if
the file or directory exists on disk already. If auto-detection fails, then it will default toMaildir if the
filename ends in a slash, andmboxotherwise. It isstronglyrecommended that you always include
the trailing slash forMaildir delivery, even if you think the directory already exists.

In these notes we will assume that you are usingMaildir directories, as they have rapidly grown in
popularity. Our examples can be easily modified to work withmboxfiles just by omitting the trailing
slash in folder names.

Accepting and filtering mail

Calling accept on a mail normally terminates your program. If you want to accept mail to multiple
locations at once, you can do so by passing all those locations as arguments toaccept .

The following example automatically saves all incoming mail into Maildirs based upon the sender,
as well as to a central inbox.

#!/usr/bin/perl -w
use strict;

use Mail::Audit;
use Mail::Address;
use constant INBOX => "~/Maildir/";

my $mail = Mail::Audit->new(emergency=>"~/emergency_mb ox");

my $from_header = $mail->from;
my @senders = Mail::Address->parse($from_header);

This following line walks through all the senders mentione d
in the From header (almost always just one), extracts the
username (p.fenwick@perltraining.com.au would be just
’p.fenwick’.

my @usernames = map { $_->user } @senders;

Perl Training Australia (http://perltraining.com.au/) 73

Chapter 10. Mail processing and filtering

We now adjust our senders to replace dots (which have
special meanings in Maildirs) with underscores (which do
not).

foreach (@usernames) {
s{\.}{_}g;

}

Finally, we map those usernames into directories.
Our p.fenwick example would become ~/Maildir/.users.p_f enwick/

my @user_archives = map { INBOX. ".users.$_/" } @usernames;

If we’ve failed to extract any e-mail addresses from our Fro m
header, then @senders will be empty, and we’ll end up with an
empty @user_archives. In that case we’ll only be deliverin g
to the main mailbox.

$mail->accept(INBOX, @user_archives);

One of the most commonly used features ofMail::Audit is the ability to separate incoming mail
into folders, particularly for mailing lists. We could do ona list-by-list basis:

my $from = $mail->from;

if ($from =~ /melbourne-pm\@pm\.org/) {
$mail->accept(INBOX.".lists.perl.melbourne-pm/");

} elsif ($from =~ /jobs\@perl\.org/) {
$mail->accept(INBOX.".lists.perl.jobs/");

} elsif ($from =~ /debian-security-announce/) {
$mail->accept(INBOX.".lists.security/");

}

$mail->accept(INBOX);

If you’re on a lot of mailing lists then you may find it more convenient for Perl to automatically
detect and sort your mailing lists for you:

use Mail::Audit;
use Mail::ListDetector;
use constant INBOX => "~/Maildir/";

my $mail = Mail::Audit->new(emergency=>"~/emergency_mb ox");

Let’s see if we’re dealing with a post to a mailing list...

my $list = Mail::ListDetector->new($mail);

if ($list) {
It is a post to a list! Find its name...
my $list_name = $list->listname;

Replace dots with underscores ...
$list_name =~ s{\.}{_}g;

And accept it to ~/Maildir/.lists.$list_name/
$mail->accept(INBOX.".lists.$list_name/");

}

If it’s not a list, then just throw it in the regular Mailbox.
$mail->accept(INBOX);

74 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Mail processing and filtering

Of course, we may want to do perform actions based upon the mailing list name, rather than blindly
save it to a folder. In any case, theMail::ListDetector module can do all the hard work of
identifying the list for us.

Chapter summary
In this chapter we have only really scratched the surface of using Perl for mail filtering. A wide
variety of modules exist for creating, editing, searching,filtering, and processing email. The popular
spamassassinsystem also exists as a Perl module.

More information and modules for Mail handling can be found on the Comprehensive Perl Archive
Network (CPAN), at http://search.cpan.org/search?q=mail .

Perl Training Australia (http://perltraining.com.au/) 75

Chapter 10. Mail processing and filtering

76 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Security considerations

In this chapter...
Perl is a very powerful language which attempts to make almost everything possible. This, of course
means that it makes it very easy to write large security holesinto your code. Fortunately, a little bit
of knowledge can make this much less likely.

In this chapter we cover potential security pitfalls and howto avoid most of them. We also touch on
privileges under Perl.

This is not a complete coverage of Perl security.For more comprehensive coverage of
programming securely in Perl refer to Perl Training Australia’s Perl Securitycourse notes (available
online at at http://perltraining.com.au/notes.html).

Potential security pitfalls
Most of us wouldn’t give shell access on a secure machine to any random person who asked. Neither
would we install code from an unknown party just on their request. Yet it’s surprising how often
security is overlooked when writing code. Any time that a program accepts input from an unknown
party and does not verify that input before using it to affectyour system, it is inviting a security
violation.

Cleaning up after security violations can be a tremendous job. It makes sense, therefore, to try to
avoid them. Being aware of the issues is the first step; knowing how to avoid most of them is the
second.

The biggest security pitfall in most programs (regardless of language) is best summed up as
unintended consequences. Consider the following Perl code:

#!/usr/bin/perl -w
DON’T USE THIS CODE
use strict;
use CGI;

my $filename = CGI->param(’file’);

open(FILE, "/home/test/$filename")
or die "Failed to open /home/test/$filename for reading: $! ";

print out contents of requested file
print <FILE>;

In this code we have used the two-argument version ofopen . Further, we haven’t specified a mode
for opening the file. Under normal circumstances, Perl will assume we meant to open this file for
reading. To many beginners, this code looks innocent. Yet imagine that we pass in the value:

../../etc/passwd

Oops. We just printed out the contents of/etc/passwd ! Now imagine that we pass in the value:

Perl Training Australia (http://perltraining.com.au/)
77

Chapter 11. Security considerations

../../bin/rm -rf /home/test/ |

This tells Perl to execute the command on the left and pipe theoutput to the given filehandle.
Printing out the contents of/etc/passwd is bad, but executing arbitrary commands is a disaster.

This isn’t rocket science. An average attacker can exploit this mistake to see the contents of files they
shouldn’t, overwrite existing files and run system commands. Writing code like the above is like
giving shell access to anyone who asks. And yet it’s such a common mistake.

Coding for security
Perl’sopen function isn’t the only place where you can go wrong. Any function or operator that
passes input via the shell requires careful attention, as itmay containshell meta-characters.
Assuming you can’t just avoid all such functions and operators, the only way to ensure your code is
safe is tonever trust input from the user.

Fortunately this isn’t too hard, and can be done without too much effort. If we know what characters
a field is allowed to have, we can use a regular expression to make sure that only these characters are
used:

#!/usr/bin/perl -w
use strict;
use CGI;

my $filename = CGI->param(’file’);

unless ($filename =~ /^([\w.-]+)$/) {
die "Filename is not valid!\n";

}

Filename is okay (only contains A-Z, a-z, 0-9, _, . and -)

open(FILE, "<", "/home/test/$filename")
or die "Failed to open /home/test/$filename for reading: $! ";

print out contents of requested file
print <FILE>;

It is always better to specify what is allowed, rather than what is not allowed. This is because it’s
much easier to modify your expression to allow a few extra characters if necessary, whereas it is
almost impossible to be sure that you’ve listedall the potentially bad characters.

However, even if we’re careful, we can still make mistakes. Wouldn’t it be nice if Perl could provide
some extra level of security to ensure that we don’t use untrusted input by accident? It can, by using
taint mode.

Taint checking
It’s always important that we validate our input, and this isparticularly true if we’re working in a
security sensitive context. Unfortunately it’s easy to forget our validation steps, even if you are
programming defensively.

To help prevent this; Perl has aTaint mode. Taint mode enforces the following rule:

78 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Security considerations

You may not use data derived from outside your program to affect something else outside your program --
at least, not by accident.

Taint mode achieves its aim by marking all data that comes from external sources astainted. This
data will then be considered unsuitable for certain operations:

• Executing system commands

• Modifying files

• Modifying directories

• Modifying processes

• Invoking any shell

• Performing a match in a regular expression using the(?{ ... }) construct

• Executing code using string eval

Attempting to use tainted data for any of these operations results in an exception:

Insecure dependency in open while running with -T switch at insecure.pl line 7.

Tainted data is communicable. Thus the result of any expression containing tainted data is also
considered tainted.

Turning on taint
Taint mode automatically enabled when Perl detects that it’s running with differing real and effective
user or group ids -- which most commonly occurs when the program is running setid.

Taint mode can also be explicitly turned on by using the-T switch on the shebang line or command
line.

#!/usr/bin/perl -wT # Taint mode is enabled

It’s highly recommended that taint mode be enabled for any program that’s running on behalf of
someone else, such as a CGI script or a daemon that accepts connections from the outside world.
Once taint checks are enabled, they cannot be turned off.

Using taint checks is often a good idea even when we’re not in asecurity-sensitive context. This is
because it strongly encourages the good programming (and security) practice of checking incoming
data before using it.

Untainting your data
The only way to clear the taint flag on your data is to use a capturing regular expression on it.

($clean_filename) = ($filename =~ /^([\w.-]+)$/);

if (not defined $clean_filename) {
die "Filename is not valid!\n";

}

Filename is okay (only contains A-Z, a-z, _, . and -)

The contents of the special variables$1, $2, (and so on) are also considered clean, but it’sstrongly
recommended that you use the list-capturing syntax shown above.$1, $2 can be set to

Perl Training Australia (http://perltraining.com.au/) 79

Chapter 11. Security considerations

indeterminate-yet-clean values if your regular expression fails, whereas a list-capturing syntax
guarantees$clean_filename will be undefined on failure.

Passing your data through a regular expression does not meanthat it’s safe to use. However it should
force you to think about it first. There’s nothing to stop you from bulk-untainting data with an
expression like/(. *)/s , but doing so is extremely trusting of your data, and certainly not
recommended.

Dangerous environment variables
In addition to data our program receives while running, we also have to be aware of environment
variables that can be set. Taint mode requires that each of these be either empty or untainted before
they may be used.

• PATH- the directories searched when finding external executables.

• IFS - Internal Field Separator; the characters used for word splitting after expansion.

• CDPATH- a set of paths first searched bycd when changing directory with a relative path.

• ENV- the location of a file containing commands to execute upon shell invocation.

• BASH_ENV- similar toENVbut only comes into effect when bash is started non-interactively (eg. to
run a shell script).

• PERL5SHELL(Windows only) - The shell that Perl will use to invoke when calling system
commands. This is only checked for taintedness in Perl 5.8.9and above.

Not all of these are used by all shells, but Perl will err on theside of caution and check them all
regardless. If any are set, and we attempt to perform an operation which makes use of them, Perl will
throw an exception:

Insecure $ENV{ENV} while running with -T switch at insecure .pl line 4.

The best way to avoid encountering these errors is to set these values yourself. For the most part this
means the start of your script will look similar to:

#!/usr/bin/perl -wT
use strict;

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};
$ENV{PATH} = "/usr/bin/:/usr/local/bin";

At the very least you should make sure that any script runningin taint mode sets its own$ENV{PATH}.

PERL5LIB, PERLLIB, PERL5OPT
ThePERL5LIB andPERLLIB environment variables can be set to tell the perl interpreter where to look
for Perl modules (before it looks in the standard library andcurrent directory). These can be used
instead of includinguse lib "path/to/modules" in your code.

ThePERL5OPTenvironment variable can be set to tell the perl interpreterwhich command-line
options to run with. These consist of-[DIMUdmtw] switches.

These environment variables are silently ignored by Perl when taint checking is in effect.

80 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Security considerations

Set-user-id Perl programs
suidperl , which allows Perl programs to run with elevated privilegeshas regularly been the cause of
security problems for Perl. In August 2000 a root shell exploit was discovered. This was
consequently fixed, however further security vulnerabilities are always possible.

suidperl is neither built or nor installed by default, and may be removed from later version of Perl.
It is recommended that you use dedicated, single-purpose tools such assudo instead ofsuidperl

where possible.

You can learn more about running setuid and setgid programs safely in Perl Training
Australia’s security notes that can be found at http://perltraining.com.au/courses/perlsec.html .

Chapter summary
This chapter covered using Perl’staint modeto help us ensure that we always validate input from
external sources. Taint mode does not trust any informationfrom external sources and thus insists
that environment variables are cleaned before they are used.

Perl Training Australia (http://perltraining.com.au/) 81

Chapter 11. Security considerations

82 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Logfile processing and
monitoring

In this chapter...
This chapter covers some of Perl’s modules which make working with log files easier.

Tailing files
Perl is often used to process log files, sometimes even while those log files are being written.
File::Tail makes this task easy.

use File::Tail;

my $file = File::Tail->new("/var/log/apache/access.log ");

while (defined(my $line = $file->read())) {
do something with the line

}

File::Tail does its best to ensure that it does not "busy-wait" on a file that has little traffic. Further,
if the file does not change for some time,File::Tail will check to make sure that it’s still there and
hasn’t beenrolled-overto a new file. If this has occurred it will re-open the originalfile name for you.

Optional arguments
File::Tail can be given a number of arguments upon creation to change howit performs. Some of
these are listed below:

name

The name of the file to open.

interval

The initial time to wait between checks to see if new data has been written to the file. The
default value is 10 seconds.

maxinterval

The maximum number of seconds that will be spend sleeping between checks to the file for new
input. Each timeFile::Tail reads new data it counts the number of new lines and divides that
by the time it just waited. This is used as the average time before new data is used as the
interval to wait, so long as this interval is not greater thanmaxinterval . By default this is 60 (as
in File::Tail will never wait for more than 60 seconds to check the file).

adjustafter

The resistance to increasing the wait interval upwards. Thedefault is 10, soFile::Tail will
wait for the current interval 10 times before adjusting the interval upwards.

Perl Training Australia (http://perltraining.com.au/) 83

Chapter 12. Logfile processing and monitoring

resetafter

The number of seconds after the last change thatFile::Tail should wait before checking to
see if the file has been closed and reopened. The default isadjustafter * maxinterval .

We use these arguments as follows:

use File::Tail;

my $file = File::Tail->new(
name => "/var/log/apache/access.log",
maxinterval => 60,
adjustafter => 10,

);

while (defined(my $line = $file->read())) {
print the line out
print $line;

}

In most cases, the defaults should work fine, so you should only adjust them ifFile::Tail is not
responsive enough, or is causing undue load on your system.

File::Tail::App
File::Tail has one major limitation, if your program halts for some reason there is no good way to
resume reading from where you got up to. If this is a requirement of your project you may want to
look atFile::Tail::App .

use Unix::PID ’/var/run/logfile_app.pid’;
use File::Tail::App qw(tail_app);

tail_app({
new => [

name => ’/var/log/apache/access.log’,
interval => 1,

],
lastrun_file => ’logfile_app.lastrun’,
do_md5_check => 1,
line_handler => \&process_line,

});

sub process_line {
my ($line) = @_;
do something with the line

}

Unix::PID records our process’ PID in the given file, or exits with an error if the file already contains
the PID of a running process. This ensures our process isn’t running twice, and makes it easier to
locate our long-running process if we need to stop or restartit.

lastrun_file is a scratch-pad to which our process can record details of where its up to. This means
that if the process is terminated unexpectedly, it will be able to seek to the correct place in the log file
when it next runs.File::Tail::App checks to see if the file has changed drastically since the lastrun
information written - such as being truncated - and starts atthe beginning if so.

do_md5_check records a MD5 sum on a small part of data at the beginning of thefile. If this value
changes between invocations of your program, then file processing will start at the beginning of the
file regardless of the value inlastrun_file .

84 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Logfile processing and monitoring

line_handler is given a reference to the subroutine we wish to use to handleeach line, in this case
process_line . If this callback is not specified, thenFile::Tail::App simply prints each line.

Exercises
Your instructor will tell you which file to use as your input for these exercises.

1. UseFile::Tail to print out each line in the given file as it is generated. You may find it useful
to setinterval => 1 for more responsive results.

2. Run your program. Notes will be printed to the file before and after it has been rotated. Make
sure thatFile::Tail is correctly handling rotated files. An answer can be found in
exercises/answers/file_tail.pl .

3. UseFile::Tail::App to print out each line in the given file as it is generated. You can skip the
use Unix::PID line from the example; if you do use it, make sure you try to write to a file in
your own directory, and not in/var/run .

Once you’re happy that your program is working, stop it from running. Run it a second time and
check that it starts from where it left off.

Interesting data
A common task for a Perl program is to watch a logfile for interesting lines of data. These may be
warnings or errors, or just things entirely out of the ordinary. You could be tempted to write a
program and specify what the interesting lines look like, and this works very well if you’re looking
for accesses to a particular file, or connections from a particular machine.

However in the more general case of show meall the "interesting" data that’s written to a file,
specifying regexps for that "interesting" data becomes more difficult. Let’s take the example of a
program that watches the Unixsyslog file. If a line is written tosyslog that you’ve never ever seen
before, it’s probably very interesting and unusual, but if you’ve never ever seen it before, your regexp
probably won’t catch it.

A much better technique is to specify lines which areboring. For example, the DNS daemon on
many systems will report about problems with other people’sservers. While this may be useful to
determine why a particular name is not resolving (or resolving strangely), it’s not something we can
usually control or care about. We may ignore such lines with:

Regular expressions of boring data
my @boring = (
’named\[[0-9]+\]: bad referral’,
’named\[[0-9]+\]: ns_resp: query\(. * \) All possible A RR lame’,
’named\[[0-9]+\]: ns_resp: query\(. * \) No possible A RRs’,
’named\[[0-9]+\]: ns_forw: query\(. * \) All possible A RR’s lame’,
’named\[[0-9]+\]: sysquery: query\(. * \) All possible A RR’s lame’,
’named\[[0-9]+\]: . * NS points to CNAME’,
’named\[[0-9]+\]: unrelated additional info . * type A from’,
);

Build one big regular expression to match all above
my $boring_re = "(?:". join(")|(?:", @boring). ")";
$boring_re = qr/$boring_re/o;

Perl Training Australia (http://perltraining.com.au/) 85

Chapter 12. Logfile processing and monitoring

If we uselogcheck or a similar program which already has regular expressions to cover all the
boring cases we can just walk through those rather than including them into our file:

my @boring;

Get regular expressions from logcheck
foreach my $file (glob("/etc/logcheck/ignore.d.paranoi d/ * ") {

Skip files we can’t read
open(RE, "<", $file) or next;

push @boring, <RE>;
}

Build one big regular expression to match all above
chomp @boring;
my $boring_re = "(?:". join(")|(?:", grep({$_}, @boring)) . ")";
$boring_re = qr/$boring_re/;

Once we have a regular expression which can help us filter out the boring messages, we can then do
something useful with the rest:

use File::Tail;

my $file=File::Tail->new("/var/log/syslog");

while (defined(my $line = $file->read())) {

Skip if the line looks boring
next if $line =~ /$boring_re/o;

Do something useful here.
print $line;

}

This being Perl, we can do more useful things with the interesting lines than just print them out. We
could e-mail them to an administrator (encrypted first, if weprefer), announce them on an IRC
channel, or send them via instant message to whoever is responsible for monitoring our machine that
day.

Parsing Apache Logfiles
Once we can tail a file, we may find it useful to parse the contents. There are a great many modules
on CPAN that allow us to parse logs of certain formats. A common example is looking through
Apache log files, for which we can useParse::AccessLogEntry .

use File::Tail::App;
use Parse::AccessLogEntry;

my $parser = Parse::AccessLogEntry->new();
tail_app({

new => [
name => ’/var/log/apache/access.log’,
interval => 5,

],
lastrun_file => ’logfile_app.lastrun’,
do_md5_check => 1,
line_handler => \&process_line,

});

86 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Logfile processing and monitoring

sub process_line {
my ($line) = @_;

my $contents = $parser->parse($line);

print "Host: $contents->{host} ";
print "Date: $contents->{date} ";
print "File: $contents->{file} ";

}

Generating reports from logfiles with Logfile
TheLogfile module can be used to generate simple reports for a variety ofdifferent web log types.
For example we can find out the top 5 most popular web pages on our site for the time period our log
covers with:

use Logfile::Apache;

my $logfile = new Logfile::Apache(
File => ’/var/log/apache/access-pta.log’,
Group => [qw(File)],

);

$logfile->report(
Group => "File",
Sort => "Records",
Top => 5,

);

which returns:

File Records
===
/tips/index 1659 17.70%
/pta 851 9.08%
/favicon 617 6.58%
/images/logo 486 5.18%
/images/vcss 484 5.16%

As we have two index pages in our/tips/ directory:index.html andindex.atom these have been
aggregated into the one record. We can also see what files weremost popular by bytes downloaded
as well as their overall popularity:

use Logfile::Apache;

my $logfile = new Logfile::Apache(
File => ’/var/log/apache/access-pta.log’,
Group => [qw(File Bytes)],

);

$logfile->report(
Group => "File",
List => [qw(Bytes Records)],
Sort => "Bytes",
Top => 5,

);

which returns:

Perl Training Australia (http://perltraining.com.au/) 87

Chapter 12. Logfile processing and monitoring

File Bytes Records
=== =========
/notes/progperl 72057469 26.35% 91 0.97%
/talks/optimisation 28316164 10.35% 15 0.16%
/notes/perloo 23956582 8.76% 62 0.66%
/notes/perldbi 22112175 8.09% 45 0.48%
/notes/sysadmin 21887840 8.00% 51 0.54%

The first and third to fifth of these are our course notes (PDF) which can be downloaded from our
site.

Logging with Perl
When writing programs, it can often be useful to send status updates to a log of some form. One
should always consider the method of program invocation in such a case. For example, if your
program is going to be run as a daemon process, then it makes sense for all information to go into a
log file. On the other hand, if your program is going to be called as an application by a user, then it’s
important to share that important information with the user(potentially as well as logging it) so that
the user has all the information they need about the program state.

Really simple logging
The easiest way to write a log in Perl is to append to a file:

use IO::Handle;
use autodie;

Open file for appending, turn off buffering
open(my $log_fh, ">>", "my_app.log");
$log->autoflush(1);

...

print {$log_fh} "Interesting event happened here";

This is fine in most cases, but it will make your lifeverydifficult if you want to change how logging
is done in the future, such as logging to a database rather than a file.

A much better method is to write a subroutine for logging. This is not only easier to call, but gives
you the flexibiliy of updating a single routine to change how all your logging is done. The following
code provides a minmal example, which includes date-stampsat the start of each line.

use IO::Handle;
use constant LOGFILE => ’/var/log/my_app.log’;

{
my $log_fh; # This variable is persistent, but only

accessible to the subroutine below.

sub mylog {
use autodie;

if (not $log_fh) {
open ($log_fh, ’>>’, LOGFILE);
$log_fh->autoflush(1);

}

88 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Logfile processing and monitoring

my $date = localtime();

print {$log_fh} "[$date] @_\n";

}

}

In Perl 5.10, thestate andsay keywords are available, which makes this even easier:

use IO::Handle;
use constant LOGFILE => ’/var/log/my_app.log’;

sub mylog {
use autodie;
use feature qw(say state);

state $log_fh; # State variables are persistent

if (not $log_fh) {
open ($log_fh, ’>>’, LOGFILE);
$log_fh->autoflush(1);

}

my $date = localtime();

say {$log_fh} "[$date] @_";

}

On systems with native appending support (which includes most Unix systems writing to local
disks), these simple logging routines can be used without any sort of locking, provided that writes
remain small.

For more complex systems, it’s recommended to use a pre-built logging system, such asLog4perl

(described below).

Log4perl
There are a whole range of more advanced logging options. Onevery popular heavy-weight option is
Log::Log4perl which implements Java’slog4j interface. This allows you to change the logging
behaviour of your application without restarting your code. Log4perl supports graduated logging
(error, warning, info, etc), and logging to differnet destinations, including files, sockets, e-mail,
RRDtool, and user-defined interfaces.

You can learn more aboutLog::Log4perl at http://search.cpan.org/perldoc?Log::Log4perl and also
in the perl.com article athttp://www.perl.com/pub/a/2002/09/11/log4perl.html .

Logging to Syslog
If you are writing a system daemon, or similar tool, you may wish to add your log messages to your
system’s log. On Unix systems this is the syslog file often found in /var/log/syslog . On Windows
systems this is the event log. Perl comes with a standard module to allow you to write messages to
the Unix Syslog:Sys::Syslog .

use Sys::Syslog;

Perl Training Australia (http://perltraining.com.au/) 89

Chapter 12. Logfile processing and monitoring

openlog("perl/messenger", "perror, pid", LOG_USER);
syslog(LOG_INFO, "connect: Connection closed unexpected ly");

This module is designed to provide a very similar interface as the C libraries. The first argument to
openlog is the program identifier, the second is a set of options for how to handle calls tosyslog .
The final argument is the facility.LOG_USERin this case is for any generic user-level messages. If this
were a mail, cron or ntp error though, there are other facility options for those.

syslog takes a priority for the message, and the message to print. This module can also do a whole
lot more. Readperldoc Sys::Syslog for more.

Chapter summary

• File::Tail andFile::Tail::App provide a way to process changing files.

• Judicious use of regular expressions can allow us to avoid dealing with boring data.

• We can useParse::AccessLogEntry to process Apache log files.

• Logfile allows us to get basic reports on log files.

• A simple file-appender in a subroutine can provide a quick-and-simple logging solution.

• TheLog::Log4perl module can provide very flexible and extensible logging.

• TheSys::Syslog module can be used to write to syslog.

90 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

In this chapter...
As well as handling the sending of email, Perl is a great tool for working with network services. Be
these instant messaging services such as IRC and AIM, using voice synthesis engines such as
festival, scraping web pages or talking to LDAP services, Perl can do it. Perl can also do much,
much more. This chapter covers some of these ideas.

For a detailed discussion on network programming with Perl, consult perldoc perlipc .

Sending data to IRC
Whether you’re dealing with interesting lines from log files, tracking changes on a wiki, or
monitoring a repository of source code, IRC bots are a popular choice for reporting information. The
prevalence of instant messaging and the number of clients which now handle IRC makes an excellent
way to distribute information between a large number of users.

Perl’sNet::IRC module can be used to connect to IRC, send and receive messages, and perform
other tasks. Here’s a simple example:

#!/usr/bin/perl -w
use strict;

use Net::IRC;
use constant CHANNEL => ’#Syslog’;

Setup connection
my $irc = Net::IRC->new;
my $connection = $irc->newconn(

Nick => "ReportBot",
Server => "irc.example.com",
Ircname => "IRC Reporting Bot",

) or die "Can’t connect";

Connect and report on status
$connection->join(CHANNEL) or die "Can’t join";
$connection->privmsg(CHANNEL,"Tailing syslog messages ");

At this stage use $connection to report as required.
For example combined with syslog processing from Logfiles chapter

while (defined(my $line = $file->read())) {

The following line clears any pending messages for
the bot; in our case they’re just ignored.
$connection->do_one_loop();

next if $line =~ /$boring_re/o;

$connection->privmsg(CHANNEL, $line);
}

Perl Training Australia (http://perltraining.com.au/)
91

Chapter 13. Interacting with network services

Event driven services
The above code includes the strange line:

$connection->do_one_loop();

This line tellsNet::IRC to process any waiting messages and events, and is essentialto avoid us
queueing up data on our IRC connection that never gets handled. It’s essential for programs such as
ours whereNet::IRC isn’t the main loop, butFile::Tail is.

In our simple example we take the default action on all events(which is usually to ignore them), but
we could have code run when particular actions are noticed (such as a user entering the channel, or a
particular message being sent). We demonstrate some examples of call-backs in our discussion on
AIM/ICQ below.

Sending an AOL instant message
IRC messages are great if the channel is quiet. However if thechannel gets busy important messages
could be missed. An alternative is to use something like AOL’s Instant Messaging service (AIM) or
ICQ. Both of these use the OSCAR protocol, and we can use theNet::OSCAR module to interface
with this.

use strict;
use Net::OSCAR qw(:standard);
use File::Tail;

use constant USERNAME => "example"; # Bot username
use constant PASSWORD => "secret";
use constant SYSADMIN => "my_aim_username"; # Human userna me

my $file = File::Tail->new("/var/log/example.log");

my $oscar = Net::OSCAR->new();
my $logged_in = 0;

Set some call-backs to make our lives easier
$oscar->set_callback_signon_done(sub { $logged_in = 1 }) ;

$oscar->signon(
screenname => USERNAME,
password => PASSWORD,

) or die "Failed to connect";

A timeout of -1 means "wait forever" until events occur.
This means we’ll do the minimum amount of processing to
login.
$oscar->timeout(-1);

Wait until we’re logged in.
while(not $logged_in) {

$oscar->do_one_loop();
}

Now reset our timeout to 0.01 seconds, so we don’t
wait too long while reading our file.
$oscar->timeout(0.01);

Now that we’re connected, we’ll just copy lines
from our logfile to our remote user as we see them.

92 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

while (defined(my $line = $file->read())) {
$oscar->send_im(SYSADMIN, $line);
$oscar->do_one_loop();

}

Call-backs
In the above code we register a call-back with our$oscar object. Theset_callback_signon_done

method takes a reference to a subroutine as its argument. In our example we’ve supplied an
anonymous subroutine that sets a flag, but we can also create areference to a subroutine:

$oscar->set_callback_signon_done (\&signon_done);

then later ...

sub signon_done {
print "Logged in!\n";

}

TheNet::OSCAR module allows for a wide variety of callbacks to be set, on anything from buddies
logging in and out, to messages and chat-invites being received.

Sending data to a speech engine
With the amount of visual data we have to deal with from day to day, sometimes it helps to use a
different channel to deal with really important information. Other times, it’s just easier to sit back
and listen to a report, than to read it yourself. In any case you can use theSpeech::Synthesis

module to help fulfil your aims.

This module provides access to a number of engines: SAPI4, SAPI5 and MSAgent (all Win32 only),
MacSpeech (OS X only) and Festival.

use Speech::Synthesis;
my $engine = ’Festival’;

my $ss = Speech::Synthesis->new(
engine => "Festival",
language => "en_AU",
voice => "rab_diphone",

);

$ss->speak("All your base are belong to us.");

Web browsing and scraping
Perl is all about making our lives easier, and a lot of this is about doing our work for us. Well,
wouldn’t it be great if there was a Perl module to do our web browsing? It turns out that there is.
WWW::Mechanize .

WWW::Mechanize (or Mech, as it is commonly known) allows you to automate interaction with
websites. It supports fetching pages, following links, submitting forms, and much more.

Perl Training Australia (http://perltraining.com.au/) 93

Chapter 13. Interacting with network services

The following example goes to http://search.cpan.org/ andperforms a module search. It then locates
all the module links on the first page, and displays their names and URLs.

#!/usr/bin/perl -w
use strict;
use WWW::Mechanize;

Get our argument from the command line, or use
’Acme’ as a default

my $query = $ARGV[0] || ’Acme’;

Create our Mechanize agent.

my $mech = WWW::Mechanize->new();

Get our page

$mech->get(’http://search.cpan.org/’);

Find our query form (named f), fill it in, and submit

$mech->form_name(’f’);
$mech->field(’query’, $query);
$mech->submit;

my @links = $mech->links;

All our modules end in a ".pm" or ".pod" extension.

my @module_links = grep { $_->url =~ /\.(pm|pod)$/ } @links;

Walk though each of our links and print the text and url.

foreach my $link (@module_links) {
my $text = $link->text;
my $url = $link->url;
print "$text\n\t$url\n\n";

}

When run with a command-line argument ofQuantum the following results are produced (truncated
for space):

Quantum::Random
/author/FOX/Quantum-Random-0.01/lib/Quantum/Random. pod

Acme::MetaSyntactic::quantum
/author/BOOK/Acme-MetaSyntactic-0.83/lib/Acme/MetaS yntactic/quantum.pm

Quantum::Entanglement
/author/AJGOUGH/Quantum-Entanglement-0.32/Entanglem ent.pm

Quantum::Superpositions
/author/LEMBARK/Quantum-Superpositions-2.02/lib/Qua ntum/Superpositions.pm

TheWWW::Mechanize class provides a very rich interface, allowing one to set theuseragent string,
handle cookies, and fill in forms.

You can learn more about WWW::Mechanize on http://search.cpan.org/ and searching for
WWW::Mechanize .

94 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

Working with LDAP
LDAP (Light-weight Directory Access Protocol) is the de-facto internet directory standard. It allows
users to locate organisations, individuals and other resources (such as files and devices) from an
internet or intranet directory server. It is supported by many companies including Sun, Microsoft,
IBM and Novell.

Perl’sNet::LDAP module allows you to access an existing LDAP server through Perl. It can be used
to search directories as well as add, delete and modify entries. This section assumes some knowledge
of the LDAP protocol.

Connecting
UsingNet::LDAP to connect to our LDAP server is just a matter of creating our object and binding.

use Net::LDAP;

my $ldap = Net::LDAP->new(
’ldap.perltraining.com’,
onerror => ’die’,

);

$ldap->bind(
’cn=root, o=Perl Training Australia, c=AU’,
password => $password,

) ;

Searching
To search for an entry we just create our search pattern and search. It’s always a good idea to check
whether our search was successful, as otherwise it may appear that our search term is not available
when instead there was an error.

Perform search
my $results = $ldap->search(

filter => "(&(sn=Fenwick) (o=Perl Training Australia))",
);

Handle errors
if ($results->code) {

die $results->error;
}

Dump the contents of each entry returned
foreach my $result ($results->entries) {

$result->dump;
}

End session.
$ldap->unbind;

Perl Training Australia (http://perltraining.com.au/) 95

Chapter 13. Interacting with network services

Adding
To add an entry we can add in all the details in one go, or add in the mere basics and then modify the
object.

my $result = $ldap->add(
’cn=Paul Fenwick, o=Perl Training Australia, c=AU’,
attr => [

’cn’ => [’Paul Fenwick’, ’Paul’],
’sn’ => ’Fenwick’,
’mail’ => ’contact@perltraining.com.au’,
’objectclass’ => [

’person’,
’trainer’,
’author’,

],
],

);

$ldap->unbind;

Modifying
Modifying entries is as easy and searching for the entry we want to change, and making those
changes.

First find the entry (gives us the DN)
my $results = $ldap->search(

filter => "(&(cn=Paul Fenwick) (o=Perl Training Australia))",
sizelimit => 1,

);

Handle errors
if ($results->code) {

die "Failed to add entry: ", $results->error;
}

If no error, then we should only have one result
Ask for the first entry.
my $entry= $results=>entry(0);

$ldap->modify(
$entry,
changes => [

add => [objectclass => ’director’],
replace => [mail => ’pjf@perltraining.com.au’],
delete => [objectclass => ’author’],

]
);

$ldap->unbind;

96 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Interacting with network services

Chapter summary
This chapter has covered connecting to an IRC server, sending AIM messages, sending information
through a voice synthesiser, searching CPAN for modules, and working with LDAP. Perl is capable
of many more network services, and there are a great many modules available to help you achieve
your goals.

Perl Training Australia (http://perltraining.com.au/) 97

Chapter 13. Interacting with network services

98 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. Further Resources

Online Resources

• PerlNet - The Australian Perl Portal - http://perl.net.au/

• The Perl Directory - http://perl.org/

• Comprehensive Perl Archive Network - http://search.cpan.org/

• Perl Mongers user groups - http://pm.org/

• PerlMonks - http://perlmonks.org/

• O’Reilly’s Perl.com - http://perl.com/

Books
Perl Best Practices, Damian Conway, O’Reilly and Associates

Programming Perl, Larry Wall et al, O’Reilly and Associates

Perl for System Administration, David N. Blank-Edelman, O’Reilly and Associates

The Perl Cookbook, Tom Christiansen and Nathan Torkington, O’Reilly and Associates

Perl Training Australia (http://perltraining.com.au/) 99

Chapter 14. Further Resources

100 Perl Training Australia (http://perltraining.com.au/)

Index

Symbols
!~, 25

", 10

#, 9

#!, 7

$!, 45

$&, 40

$’, 40

$/, 19, 38

$0,63

$1,33, 40

$?,45

$_,13

$‘, 40

%ENV, 14

<>, 16

’, 10

-a,56

-c, 57

-d, 57

-e,53

-i, 55, 57

-M, 55

-n, 55

-p, 54

-T, 58

-w, 57

-x, 60

/m, 39

/s,39

=~, 25

@ARGV,13

@INC,57

__DATA__,63

‘, 47

A
absolute path,68

abs_path,68

advisory locks,62

AIM, 92

arrays,10

arrays, interpolation,12

arrays, counting backwards,11

arrays, element lookup,11

arrays, finding last index,11

arrays, length of,12

autodie,22, 45, 55

autosplit switch,56

B
backreferences,41

backticks,47

binding operators,25

boolean operators,15

C
changing directories,68

chdir,68

check switch,57

chmod,64

chown,64

comments,9

comments, in regular expressions,34

comparison operators,14

conditionals,14

copying files,59

cp,59

CPAN,20

CPAN shell,21

curdir,67

current working directory,68

cwd,68

D
debugging switch,57

deleting files,60

devnull,67

die, autodie,22

die, vs exit,43

directories, changing,68

directories, creating,66

directories, current,68

directories, paths,66

directories, recursing,69

directories, removing,66

directories, separators,66

directories, recursing,68

directories, separators,59

Perl Training Australia (http://perltraining.com.au/)
101

double-quotes,10

dump,49

E
else,15

elsif, 15

End of file,54

environment variables,80

EOF,54

epoch,53

exec,48

execute-switch,53

exit, 43

exit value,45

exit values,43

exit, vs die,43

extended regular expressions,34

F
false,14

Fcntl,61, 62

file locking,62

file test operators,60

File::Copy,59

File::Find,68

File::Find::Rule,69

File::Path,66

File::Spec,66

File::Tail, 83

File::Tail::App,84

File::Temp,62

filehandles, scalar,19

files, deleting,60

files, locking,62

files, temporary,61

files, unlocking,63

files, permissions,63

files, absolute path,68

files, changing ownership,64

files, finding attributes,60

files, normal files,66

files, opening,18

files, opening securely,77, 78

file_name_is_absolute,67

find, 68, 69

flock, 62

foreach,17

fortune,37

G
glob,65

greediness,35

H
hard link,65

hash, lookups,12

hash, size,13

hashes,12

help,7

I
if, 15

if, trailing, 16

in-place editing,55

include switch,57

input validation,78, 78

input record separator,19

input record separator,38

interpolation,10

IPC::System::Simple,45

IRC, 91, 92

K
kill, 50

L
LDAP, 95

link, 65

local, and $/,20

localtime,53

locking, unlocking,63

locking, file,62

locking, own process,63

Log4perl,89

loops, while,16

loops,foreach,17

102 Perl Training Australia (http://perltraining.com.au/)

M
m//, 23

mail filtering,72

mail filtering, by list,74

mail filtering, by sender,73

mail, sending,71

mail, sending with attachments,71

Mail::Address,73

Mail::Audit, 72

Mail::ListDetector,74

Mail::Send,71

man,7

matching operator,23

meta-characters,36

meta-characters, regular expression,25

MIME::Lite, 71

mkdir, 66

module switch,55

modules, installing,20

moving files,59

mv, 59

N
Net::IRC,91

Net::LDAP,95

Net::OSCAR,92

non-printing switch,55

O
open,18

open, for reading,19

open, for writing,20

open, handing errors,22

open, scalar filehandles,19

opendir,65

opening files, race conditions,61

operators, boolean,15

operators, comparison,14

OSCAR,92

O_EXCL,61

P
parsing, ls -l,35

path traversal attacks,67

perldoc,7

portability guidelines,59

portability, directory representation,67

portability, directory separators,66

portability, directory separators,59

POSIX,45

PPM,21

printing switch,54

pwd,68

Q
q, 54

qq,54

quantifiers,27

quotes,10

quotes, avoiding shell interaction,53

quotes, on command-line,53

qx, 47

R
race conditions,61

readdir,65

readlink,65

recursing through directories,69

recursing through directories,68

regular expression alternation,29

regular expression capturing,33

regular expression character classes,28

regular expression meta-characters,25, 36

regular expression quantifiers,27

regular expressions,23

regular expressions, $,39

regular expressions, backreferences,41

regular expressions, extended,34

regular expressions, greediness,35

regular expressions, ^,39

rename,60

rmdir, 66

rootdir,67

run,45

Perl Training Australia (http://perltraining.com.au/) 103

S
s///,24

scalar filehandles,19

scalars,9

security,58, 77

security, allowing characters,78

security, common problems,77

security, input validation,78

security, taint,78

set-uid,81

shebang,7

shell,43

shell, capturing output,47

signals, sending,50

single-quotes,10

special variables,13

Speech::Synthesis,93

split, command line,56

starting your program,9

stream editor,54

strict,8, 8

sub,17

subroutines,17

substitution operator,24

suidperl,81

symbolic link,65

symbolic link, reading,65

symlink,65

symlinks, avoiding,61

sysopen,61

system,43

system, multi-argument,44

T
tail, 83, 84

taint,78

taint switch,58

taint, untainting,79

taint, environment variables,80

taint, unsafe operations,??

tape,49

tempfile,62

temporary files,61

tmpdir,67

true,14

truth,14

types,9

U
umask,64

Unix::PID, 84

unless,15

unless, trailing,16

unlink, 60

untainting data,79

updir,67

use warnings,8

use strict,8, 8

use warnings,8

V
variables, arrays,10

variables, hashes,12

variables, scalars,9

variables, special,13

variables, naming,9

W
warnings,8, 8

warnings switch,57

WEXITSTATUS,45

while, 16

WIFEXITED, 45

working with multi-line strings,37

WWW::Mechanize,93

104 Perl Training Australia (http://perltraining.com.au/)

