Intermediate Per

#!/usr/bin/perl —~w

use strict;
$_='ev
al("seek\040D
ATA,0, 0;");foreach(1..2)
{<DATA>;}my @camellhump;my$camel;

my$Camel ;while(<DATA>){$_=sprintf("%—-6
9s",$_);my@dromedary 1=split(//);if(defined($
_=<DATA>)){@camellhum p=split(//);}while(@dromeda
ryl){my$camellhump=0 ;my$CAMEL=3;if(defined($_=shif
t(@dromedaryl))&&N\S/){$camellhump+=1<<$CAMEL;}
$CAMEL——;if(d efined($_=shift(@dromedary1))&&\S/){
$camellhump+=1 <<$CAMEL;}$CAMEL--;if(defined($_=shift(
@camellhump))&&A\S/){$camellhump+=1<<$CAMEL;}$CAMEL——;if(
defined($_=shift(@camellhump))&&\S/){$camellhump+=1<<$CAME
L;;}$camel.=(split(//,"\040..m'{/N\047\134}L"7FX")[$camellh
ump];}$camel.="\n";}@camellhump=split(\n/,$camel);foreach(@
camellhump){chomp;$Camel=$_;tr/LIF7\173\175047/\061\062\063
45678/;tr/12345678/IL7F\175\173\047'/;$_=reverse;print"$_\040
$Camel\n";}foreach(@camellhump){chomp;$Camel=$_;y/LIF7\173\17
5%047/12345678/;tr/12345678/JL7F\175\173\047'/;$_=reverse;p
rint"\040$_$Camel\n";}#japh—Erudil’;;s;\s*;;g;;eval; eval
("seek\040DATA,0,0;");undef$/;$_=<DATA>;s$\s*$$g;();;s
Ax_ssmapfeval”print\"$_\""}.{4}/g; _ DATA__ \124
\1 50\145\040\165\163\145\040\157\1 46\040\1 41\0
40\143\141 \155\145\1 54\040\1 51\155\ 141
\147\145\0 40\151\156 \040\141 \163\16 3\
157\143\ 151\141\16 4\151\1 57\156
\040\167 \151\164\1 50\040\ 120\1
45\162\ 154\040\15 1\163\ 040\14
1\040\1 64\162\1 41\144 \145\
155\14 1\162\ 153\04 0\157
\146\ 040\11 7\047\ 122\1
45\15 1\154\1 54\171 \040

\046\ 012\101\16 3\16

3\15 7\143\15 1\14

1\16 4\145\163 \054
\040 \111\156\14 3\056

\040\ 125\163\145\14 4\040\
167\1 51\164\1 50\0 40\160\

145\162 \155\151
\163\163 \151\1
57\156\056

Kirrily Robert

Paul Fenwick
Jacinta Richardson

Intermediate Perl
by Kirrily Robert, Paul Fenwick, and Jacinta Richardson

Copyright © 1999-2000 Netizen Pty Ltd

Copyright © 2000 Kirrily Robert

Copyright © 2001 Obsidian Consulting Group Pty Ltd

Copyright © 2001-2005 Paul Fenwick (pjf@perltraining.cam)
Copyright © 2001-2005 Jacinta Richardson (jarich@péeriing.com.au)
Copyright © 2001-2005 Perl Training Australia

Open Publications License 1.0

Cover artwork Copyright (c) 2000 by Stephen B. Jenkins. Usitll permission.

The use of a camel image with the topic of Perl is a trademaf'Beilly & Associates, Inc. Used with permission.

This material may be distributed only subject to the terns@mnditions set forth in the Open Publication License, wt.@ter (the latest
version is presently available at http://www.opencontegtopenpuby/).

Distribution of this work or derivative of this work in anyasidard (paper) book form is prohibited unless prior pernuass obtained from
the copyright holder.

This document is a revised and edited copy of the trainingshotiginally created by Kirrily Robert and Netizen Pty LThese revisions
were made by Paul Fenwick and Jacinta Richardson.

Copies of the original training manuals can be found at Msimurceforge.net/projects/spork

This training manual is maintained by Perl Training Aus&raiind can be found at http://www.perltraining.com.atgadtml

This is version 4.23 of Perl Training Australia’s "Internietet Perl" training manual.

Table of Contents

1. About Perl Training AUSTIIALIAueeeiiiiee it 1

B =111 Lo T PP OPOPPTPPRTT 1
L070] o 1=1 01111 o [PR R TUPPPPPP 1
1070] g1 r= (o AT PO PR PPPPT 1

DAY 2 e e e e e e e e e e e e e s et e e e e s 3
ASSUMEA KNOWIEAGEeeeieiiiiiie ittt ettt ettt e e sttt e s se e e et e e s ebbeee e e nnnees 3
Y ToTe (U1 T= o] o] [=Tod 1Y USRS 3
Platform and Version detailS............ooiiiieeccmiieee et 4
THE COUMSE NOLES.eeiii ettt ettt e st e e e s ee e e ss bt e e e enbbee e e ennbe e e eennee 4
Other MALEIIAIScei ittt et e et e e e e nbe e e e s aaneeeenans 5
LOQQING INTO YOUF BCCOUNTeeiieiitiieee st ettt e e ettt e e ettt e e e e ebbe e e e s meesssbbeeeeennbaeeeeneee 5

3. References and compleX data StIUCLUIEScoummeirieeeeiiiiiiiieer e e e e e et er e eeerereeer e e e e e e 7

TR g E 3ol g F= T o L= PRSPPI
Assumed knowledgeccccceeeeennn.
Introduction to references
USES TOF FEIEIENCES ...ttt e e e e
Creating compleX data StIUCIUIESc.iie oot eeeee e 7
Passing arrays and hashes to subroutines and functions..............cccccccooiiiiiiienn. 7
ODbjJeCt OrENTEA PEIL ...t e e e e 8
Creating and dereferencing referenCes.ot 8
EXBICISES ...ttt 9
AsSignIng through refereNCeSuiiiiiiit e 9
Passing multiple arrays/hashes as argUmENLS. . e veveeeeieaeeaiiiiiiiiiiee e eemeeee e 10
ANONYMOUS JAA SITUCLUIES ...ttt e e e e et eee e e e e e aaas 11
EXEICISE ettt emr ettt 12
COMPIEX AALA SITUCTUIES ...t eeeeeee ettt e et et e e e s seme e e e e e e s e e eannbeeeeeas 12
EXEICISES ...ttt ettt e et 13
Disambiguation and CUrY DIraCESuiii ettt e 13
[E = W B 1 | 0] 0= P PP PP PPPPPPPPPPP
EXBICISES ..ttt et
ChaPLEr SUMIMAIYeiiiiiiiieeeiiieee et s 1t e e setb e e e ettt e e e smbbe e e e e sntbeeseseeeeanbbeeeeennbbeeaens

4. External Files and PACKAOEScccoiiiiiie ettt

TR g E ol g T= T o =] TP POUPRPTOTPPR
Splitting code between files
REQUITE .ot e ettt e ettt e s et e e sm e e e e e e et e e e e nres
USE SEFCt AN WAININGSeviiiiiiiiiee ettt immmee ettt e e st e e et e e e srneeeesebreeeeans 18
Example
D S (o 1S
Introduction to packages
THE SCOPING OPEIALON.....ciiiiiiiiiiieie e e ekttt e e e e e e e ettt et e e e e e e emeee e e e e e s e anbbaneeeaaaaeas
o G (ol LS P UPPUP PP
Package variableS @nd OUFooii it e et e e e rameee e e e e e eanbeeeee s 22
EXBICISES ...ttt ettt ettt e oo ettt et e e e o e eh b e e e e e e s ettt e et e e e e e e banbeaeeeas 22
(O g T o (] a1 01 0 4 F= 1 YR PP PP 22

Perl Training Australia (http://www.perltraining.com/x iii

LT\, [0 To (W] (== PR T 25

TR (a3l g T= T =] PRSPPI 25
IMIOTUIB USES ...ttt ettt ettt e ettt e e ettt e e e saee e e s beeee e s sbbbeeeesnbaeeeeane 25
WhAL IS @ MOUUIE? ... ettt e et e e ee s aneee s 25
] (ol [PP PR 26
Where does Perl [00K for MOdUIES? ..o 26
Finding installed MOAUIES ...ttt e 26
] (ol [PSP 27
USING CPAN MOUIES.....ccoiiiiiiie ittt 27
THE dOUDIE-COION ...t et 27
WItING MOAUIES.eiiiiiiei ettt e re e et e e e st e e e s s neeeee s 28
USE VEISUS FEOUIIE ..iveeieeeitteiee e ettt meeeee ettt e s sttt e e s snbt e e e s snteee s s nbeenensneeeesanneeee s 29
WarNiNGS ANd SIHCTveiii ittt e e s sebeee e e 29
EXEICISE ettt 29
ThINGS 10 rEMEMDIET... ..t 30
Exporting and importing SUBIOULINES...........uiiieeciiiii e 30
@VISA e e 30
USE DASE ...ttt et enn e e 30
AN BXAIMPIB....ciiiii it e ettt ettt e e e s e e ee e e e e e annneee 31
EXporting by default........ ... 31
AN BXAIMPIB....ciiiii i e et e e e e e s e ee e e e e e aannees 31
IMPOItING SYMDOIS ...t e e e e 32
EXEBICISES ...ttt 33
EXPOIING tAOS . .. eeteeee ettt e e e ettt ettt e e e e e e s e bbb e e e e aaan b e e eeeeaeeeaan 33
Importing Symbols through tagScceee oo 33
EXEICISE ettt emme e et
(O aF= o (] a1 01 0 4 F= 1 YA PP PSPPI
SR O T ol =T e o] =Tt £ TP PUPPRTPPPR
TR (g E 3ol g T= T =] TP OPUPRPOPPPR
L@ o] T=Tod cR T I o] 1= PP RPPTTI
USING AN ODJECT.....ceiiiiii e e e e
INStantiating &n ODJECT........ccoiiiiiie it
Calling methods 0N an ODJECTcoeiiiiis ettt
DeStroyiNg @n ODJECT........eiiiiiiiiiiee e
ChaPLEr SUMIMAIYeiiiiiiiiieeiiieee et o s 1t e sttt e e e ettt e e e sntbeeeeesabbeeseseeeesntbeeeeennbreeeen
7. Advanced reguIAr EXPIrESSIONSiuuuuieiitceec e stteeeesrteeeesseeeee s abeeee e s sbseessaneeesaneeeeesannneeess
TR g E 3ol g F= T o =] TP UOUPRPOTPPR
ASSUMEA KNOWIBUGE ...tttk ettt e bbbttt e e e e e e s e ebbbbe e te e e aesnbbeeeeaaaeeeeannnes
Capturing matched strings to scalars
Extended regular expressions...................
EXEICISE ettt emre et
AAVANCEA EXEICISE......eiiiiiiiiiie ittt cmmmmee sttt eeeeeneee s
LCT=T=To] o= TP O P PP PP PPPPRPUPPRRN
EXEICISE .ottt
MOre Meta ChAraCLEISviii it
Working wWith MUlti-liNe StrNGSuueiiiiiie e
EXEICISE it emmr e et
Regexp modifiers for multi-line data..............ccceeeveieiiiiiiiin e 45
BaACK MBIEIENCESeeiiiiiiii ittt et e e e e e e eb e e e e e e 46
SPECIal VarADIES e 46
EXBICISES ...ttt 47

Perl Training Australia (http://www.perltraining.com/x

AAVANCEU EXBICISESvuiieeeeeee et e et em et e e et e e et e e e et eeeea s e ee s reeeataeesannns 48
ChaPLEr SUMIMAIYeeiiiiiiiieeiiieee e oo s 1t e sttt e e e e bt be e e e snbbe e e e e satbeeseseeeesntbeeeeennbbeeeens 48

S L= 1 LTS 49

T (a3l g F= T =] TP UUPRPOTPPR 49
ASSUMEA KNOWIEAGEeeiiiiiiiiiie ittt e+ttt e et e e s ne e e ne e e e e annbe e e e e nnneas 49
Angle brackets - the line input and globbing operators...........ccceevciviiie e 49
EXBICISES ...ttt et e e nnes 50
AAVANCEA EXEICISES ...cotiiiieiitieiee ittt meeeee sttt ee ettt ee et ee e e s e e e e e e eseeees 50
open() and friends - the gory detailSooceee o 50
Opening a file for reading, writing or appendingccccceevvvieee i 51
EXEICISES .ottt ettt ettt et e e ettt e e et erane e nrreee e aee
(RCT= o [TaTe Mo [T =To (o] £ =T PSPPI
010D aNd rEAAAIN ... e
=311 g o [o [O PP PP PP PP PPRPPPPPPPPPTPN
Changing AIrECIOMESceiiiiiiiieiie et ee e e e
EXEICISES .ottt e e e
Changing file CONENTSueiiiiiie e
EXEICISES .ottt
Opening files for simultaneous read/write
(O] 1] 11 oo [11 o1=2 TSRO
EXEICISES .ottt ne
Finding information about fileS.............ooi i
EXBICISES ...ttt
ReCUrsing dOWN dir€CIOMES........coiiiiiiiie ettt e e e e aeb e as
EXBICISES ...ttt
FlE TOCKING ...t ettt e e e e e e srmnee e e e e e e s e bbb e e e eaeeeaeaans
HaNdlING DINAIY DAta.........eeiiiiiiiie et eeee e e
ChaPLEr SUMIMAIYeiiiiiiiiieeiiieee et sttt e e set e e e ettt e e e snbbe e e e e sabbesseseeeesntbeeeeennbbeeaens

LYY S (=T 0 T 01 (= = T £ o o PO PUPPRPPPPR

TR a3l g T= T o =] PSPPSR

SYSEEM() ANG EXEC() «uvvveeeeiiieeeei ittt e ettt e e s ettt ee s s sbbeee e s sbbbe e e s ran e e e steeee s abeseeesanneeeas
B 11D S (S (o111
MS WINUOWS EXEICISE... . iiiieeeiiieieeee ettt eeeeeeae e e e e e eeete e s e e s e e et e s eesses e snmansnseeeseees

USING DACKLICKSeeeii ittt ettt e e st e e et e e e e
B 11D C (ST (o1 1T

WAL YOU'VE TEAINTci ittt e e et e s ea bbb e e e e e e e e e nbnnee s
WHEIE 10 NMOW? ...ttt e e e e e e ettt e e e e e e e e e e eeee e e e s anbbbneeeeaaaeeeaans 75

Perl Training Australia (http://www.perltraining.com/x %

Vi

A. COMPIEX AALA STIUCTUIESeeiieiiiiie ettt sttt et e et mee e e e e s nne e e e e e 77

ATTAYS OF BITAYS. ...ei e itiiiii ettt ettt e ettt e e sttt e e et bt e st e e s ennbbe e e enbbeeeesnneas 77
Creating and accessing a two-dimensional array ..cccceeeevveeeeeeeeeeeecccevveeneeeeeesnsneenn 1
Adding to your two-dimenSIONAl Qrray.............cemsereeeeiriieeeennieeeesreeeessneee e 77
Printing out your two-dimensional @rraycccecoiveeeeeeiieie et 78

HASNES OF @ITAYS ...t et e e et e e e enneeas 78
Creating and accessing a hash of arrays.........ccccveeeieiiiiiii e 78
Adding to your hash Of @rraysSeeee i 78
Printing out your hash Of @rraysooiiieeees e 79

AITAYS OF NASNES ...t 79
Creating and accessing an array of hashescecccccvveccvvni e vicviieeeeeee e 49
Adding to your array of hashes

Printing out your array of hashes
Hashes of hashes

Creating and accessing a hash of hashes ... 80
Adding to your hash of hashes ... 81
Printing out your hash of NaShes ... 81
MOFE COMPIEX SETUCTUIESeeiiiiee ettt eeeeeeee e e ettt et e e e e e e bbb eeeeaaebaeeeeeaaaeeesnnnnes 81
B. MOT TUNCHIONS. ...ttt ettt et e e b e e e s e e e e e e e e anenes 83
The grep() FUNCHIONoiiii ittt e et e e s eeabe e e e e e e e e e enbeeeees 83
EXEBICISES ...ttt 83
The MapP() FUNCHON.eiiii et e bbbt e e e seabe e e e e e e e e e e e nbeenees 83
EXEICISES ...ttt 84
C. UNIX CHEAL SNEET ...t e et e e e e e e 85
1070] (0] o] 1 o] o FO PP 87

Perl Training Australia (http://www.perltraining.com/x

List of Tables

1-1. Perl Training Australia’s contact detailS.....coccc....eeiiiiiiiiii e 1
7-1. MOTre MEta CHATACTEISeeiiiiiiiiie ittt et ee s 42
7-2. Effects of single and multi-line OptioNS.......ccceiiiiiiiiiii e 46
8-1. Differences between glob and readdir........o i 55
8-2. FilE TEST OPEIALOIS ...ttt ettt ettt e e e e e s s e e e e e s e bbb e e e e e e e e s e sbnnbeneeeas 60
C-1. SIMPle UNiX COMMEANGS.uuiiiiiiaieeiiiimee ettt ee e e e e s e et e e e ee s s e b breeeeaaeeaeaanns 85

Perl Training Australia (http://www.perltraining.com/x vii

viii Perl Training Australia (http://www.perltraining.com/x

Chapter 1. About Perl Training Australia

Training

Perl Training Australia (http://www.perltraining.com)eoffers quality training in all aspects of the
Perl programming language. We operate throughout Auataaldl the Asia-Pacific region. Our
trainers are active Perl developers who take a personaésitim Perl’s growth and improvement.
Our trainers can regularly be found frequenting online camities such as Perl Monks
(http://www.perlmonks.org/) and answering questionsmyiding feedback for Perl users of all
experience levels.

Our primary trainer, Paul Fenwick, is a leading Perl expeAustralia and believes in making Perl a
fun language to learn and use. Paul Fenwick has been workthdPerl for over 10 years, and is an
active developer who has written articles fidre Perl Journabind other publications.

Doctor Damian Conway, who provides many of our advancedsas)is one of the three core Perl 6
language designers, and is one of the leading Perl expertdwide. Damian was the winner of the
1998, 1999, and 2000 Larry Wall Awards for Best PracticalitytiHe is a member of the technical
committee for OSCON, a columnist for The Perl Journal, arti@wof the book "Object Oriented
Perl".

Consulting

In addition to our training courses, Perl Training Austaiso offers a variety of consulting
services. We cover all stages of the software developnfertyicle, from requirements analysis to
testing and maintenance.

Our expert consultants are both flexible and reliable, aachaailable to help meet your needs,
however large or small. Our expertise ranges beyond thaisvHerl, and includes Unix system
administration, security auditing, database design, &cdurse software development.

Contact us

If you have any project development needs or wish to learrséoRerl to take advantage of its quick
development time, fast performance and amazing vergatliitn't hesitate to contact us.

Table 1-1. Perl Training Australia’s contact details

Phone: 03 9354 6001

Fax: 03 9354 2681

Email: contact@perltraining.com.au
Webpage: http://www.perltraining.com.au/
Address: 104 Elizabeth Street, Coburg VIC, 3058

Perl Training Australia (http://www.perltraining.com/x 1

Chapter 1. About Perl Training Australia

2 Perl Training Australia (http://www.perltraining.com/x

Chapter 2. Introduction

Welcome to Perl Training Australialatermediate Pertraining course. This is a two-day module in
which we extend on the material coveredmtroduction to Perland explore the topics of references,
file input and output, interacting with the operating systemd using modules.

Credits

This course is based upon the Intermediate Perl traininguteagritten by Kirrily Robert of Netizen
Pty Ltd.

Course outline

Day 1

« Revise assumed knowledge

« References and complex data structures
- Introduction to modules and packages

« Writing packages and modules

+ Using Perl objects

Day 2

« Advanced regular expressions
« File /O
« System interaction

- Bonus material

Assumed knowledge

This training module assumes the following prior knowledgd skills:

« Basic Perl fluency, including a familiarity with Perl varlaliypes, functions and operators,
conditional constructs, and basic regular expressions.

Perl Training Australia (http://www.perltraining.com/x 3

Chapter 2. Introduction

Module objectives

+ Understand and use Perl references to create complex dattusés and anonymous data
structures.

- Understand how to use Perl modules and where to find them.

« Understand how to write basic Perl modules and how to userto export symbols for later
use.

« Understand how to use Perl objects.

- Understand how to capture data using regular expressiahwark with greedines, multi-line
data and back references.

- Be able to open files and directories to read and write daitag warious techniques.
« Perform tests on files and directories.

« Open pipes to read or write data through another program.

« Use Perl functions to call system commands.

« Use Perl to interact with the file system, users, and prosesse

« Understand the security implications of running systemmamds from Perl, and how to increase
security.

Platform and version details

Perl is a cross-platform computer language which runs siséally on approximately 30 different
operating systems. However, as each operating systenfasattif this does occasionally impact on
the code you write. Most of what you will learn will work eqlialvell on all operating systems;
your instructor will inform you throughout the course of amgas which differ.

At the time of writing, the most recent stable release of Re518.6, however older versions of Perl
(particularly 5.6.1 and 5.005) are still common. Your iostor will inform you of any features
which may not exist in earlier versions.

The course notes

These course notes contain material which will guide yoaubh the topics listed above, as well as
appendices containing other useful information.

The following typographical conventions are used in theges
System commands appeaitthis typeface
Literal text which you should type in to the command line oit@dappears asionospaced font

Keystrokes which you should type appear like tlEBTER. Combinations of keys appear like this:
CTRL-D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

4 Perl Training Australia (http://www.perltraining.com/x

Chapter 2. Introduction

Parts of commands or other literal text which should be @galdy your own specific values appears
like this

Notes and tips appear offset from the text like this.

“ Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

\: Notes marked with "Readme" are pointers to more information which can be found
in your textbook or in online documentation such as manual pages or websites.

Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

Other materials

In addition to these notes, it is highly recommend that yotaiokba copy of Programming Perl (2nd
or 3rd edition) by Larry Wall, et al., more commonly refertedas "the Camel book". While these
notes have been developed to be useful in their own righCtmeel book covers an extensive range
of topics not covered in this course, and discusses the ptscevered in these notes in much more
detail. The Camel Book is considered to be the definitiveresfee book for the Perl programming
language.

The page references in these notes refer t@tteditionof the Camel book, unless otherwise
stated. References to the 2nd edition will be shown in phe=es.

Logging into your account

However you're doing this course, you will have an accounicilyou’ll want to log into at this
point. If you're doing a corporate course, this is most fkeh a machine that you're familiar with.
Otherwise, your instructor will give you details on how to tHés.

In any case, you should find yourself at a Unix shell prompti ¥bould find that your account has
anexercises/ subdirectory, or your instructor will tell you how to setship. Thesxercises/
directory contains example scripts and answers that aeereefto throughout these notes. If your
Unix stills are rusty, you can find a cheat sheet in AppendixX @ese notes.

Perl Training Australia (http://www.perltraining.com/x 5

Chapter 2. Introduction

6 Perl Training Australia (http://www.perltraining.com/x

Chapter 3. References and complex data
structures

In this chapter...

In this chapter, we look at Perl’s powerful reference syrtas how it can be used to implement
complex data structures such as multi-dimensional listshas of hashes, and more.

Assumed knowledge

It is assumed that you have a good understanding of Perbstgpés: scalars, arrays, and hashes.
Prior experience with languages which use pointers oreefags is helpful, but not required.

Introduction to references

Perl's basic data type is tleealar. Arrays and hashes are made up of scalars, in one- or
two-dimensional lists. It is not possible for an array orthasbe a member of another array or hash
under normal circumstances.

However, there is one thing about an array or hash which lasitenature -- its memory address.
This memory address can be used as an item in an array onlistha data extracted by looking at
what's stored at that address. This is what a reference is.

\: The following sources also provide useful and comprehensive information about
references:

« Chapter 8 (chapter 4, 2nd Ed) of the Camel book, and in perldoc perlref .
« Chapter 1 of Advanced Perl Programming (O’Reilly’s Panther book).

« Tom Christiansen’s FMTYEWTK (Far More Than You Ever Wanted To Know) tutorials
available from the Perl website (http://www.perl.com/).

Uses for references

There are three main uses for Perl references.

Creating complex data structures

Perl references can be used to create complex data strsidturénstance hashes of arrays, arrays of
hashes, hashes of hashes, and more.

Perl Training Australia (http://www.perltraining.coni/a

Chapter 3. References and complex data structures

Passing arrays and hashes to subroutines and functions

Since all arguments to subroutines are flattened to a listal&ss, it is not possible to use two arrays
as arguments and have them retain their individual idestiti

my @al
my @a2

gw(a b c);
gw(d e f);

printargs(@al, @az2);
sub printargs {

print "@_\n";
}

The above example will printodtb ¢ d e f .

References can be used in these circumstances to keep andhiashes passed as arguments
separate.

Object oriented Perl

References are used extensively in object oriented PddctnPerl objectsre references to data
structures.

Creating and dereferencing references
To create a reference to a scalar, array or hash, we prefigite nvith a backslash:
my $scalar = "This is a scalar";

my @array = qw(a b c);
my %hash = (

'sky’ = > ‘blue’,
‘apple’ = > red’,
‘grass’ = > ‘green’,

)
my $scalar_ref = \$scalar;

my $array_ref = \@array;
my $hash_ref = \%hash;

Note that all references are scalars, because they corgaigla item of information: the memory
address of the actual data. This is what a reference lookéflijou print it out:

% perl -e 'my $foo_ref = \$foo; print "$foo_refin";’

SCALAR(0x80c697c)

% perl -e 'my $bar_ref = \@bar; print "$bar_refin";
ARRAY (0x80c6988)

% perl -e 'my $baz_ref = \%baz; print "$baz_ref\n";
HASH(0x80c6988)

You can find out whether a scalar is a reference or not by ubieigft) function, which returns a
string indicating the type of reference, or undef if the ac& not a reference.

print ref($scalar_ref); # prints SCALAR
print ref($array_ref); # prints ARRAY
print ref($hash_ref); # prints HASH

8 Perl Training Australia (http://www.perltraining.com/x

Chapter 3. References and complex data structures

\: . Theref() function is documented on page 773 (page 204, 2nd Ed) of the Camel
book or in perldoc -f ref .

Dereferencing (getting at the actual data that a refereairgsato) is achieved by prepending the
appropriate sigil to the name of the reference. For instahes have a hash reference
$hash_reference we can dereference it by adding a percentage sighash_reference

my $new_scalar = Sscalar_ref;

my @new_array = @$%array_ref;

my %new_hash = %$hash_ref;

Here’s one way to access array elements or slices, and rexrslees:

print $$array_ref{0]; # prints the first element of the arra y
referenced by S$array_ref: a

print @$array_ref[1,2]; # prints an array slice: b, ¢

print $$hash_ref{'sky’}; # prints a hash element’s value: b lue

The other way to access the value that a reference pointsdage the "arrow" notation. This
notation is usually considered to be better Perl style tharohe shown above, which can have
precedence problems and is less visually clean.

print $array_ref- >[0]; # prints the first element of the array
referenced by S$array_ref: a
print $hash_ref- >{'sky’}; # prints a hash element's value: blue

The notation here is exactly the same as selecting elententsain array or hash, except that an
arrow is inserted between the variable name and the eleméstch. So wherefoo[1] gets the first
(ie, position 2) element from the arr@jfoo, $foo- >[1] gets the first element from the array pointed
to by the referencsfoo .

It's not possible to get an array or hash slice using arrow notation.

Taking an array slice of a single element from an array reference does not result in a warning
from Perl, although it's certainly not recommended. Perl does however try to be helpful in this
case and returns the scalar referred to by the array slice, rather than the length of the array slice
which would be 1.

my $value = @$array_ref[0]; # Oops, this should be $$array_r ef[0];
print $value; # Prints 'a’ as desired but is not obvious
Exercises

1. Create an array calleglfriends , and populate it with the name of some of your friends.

2. Create a reference to your array calbetnds_ref . Using this reference, print the names of
three of your friends.

Perl Training Australia (http://www.perltraining.com/x 9

Chapter 3. References and complex data structures

Assigning through references

Assigning values to the underlying array or hash througtexeece is much the same as accessing
the value:

my @trees = gw/lemon orange grapefruit/;
my S$treeref = \@trees;

$treeref->[3] = 'mandarin’;
print "@trees"; # prints "lemon orange grapefruit mandarin

my %fruit = (kumquat => "sour",
orange => "sweet",
lemon => "sour",
mandarin => "sweet");

my $fruit = \%fruit; # scalars, arrays and hashes can all
have the same names if it makes sense

$fruit->{grapefruit} = "sour and sweet";

Passing multiple arrays/hashes as arguments

10

When we pass multiple arrays to a subroutine they are flattentto form one large array.

my @colours = gw/red blue white green pink/;
my @chosen = gw/red white green/;

print_unchosen(@chosen, @colours);

sub print_unchosen {
my (@chosen, @colours) = @_;

at this point @chosen contains:
(red white green red blue white green pink)
and @colours contains () - the empty list.

}

If we want to keep them separate, we need to pass in referemtfesarrays instead:
ref_print_unchosen(\@chosen, \@colours);

sub ref_print_unchosen {
my ($chosen, $colours) = @_;

print "Chosen list:\n";

foreach (@$chosen) {
print "$_\n";

}

print “Colour list:\n";

foreach (@$%colours) {
print "$_\n";

}

}

When we pass references into a subroutine we're allowingstitaroutine full access to the structure
that the reference refers to. All changes that the subreutiakes to that structure will remain after
the subroutine has returned. If you wish to make a copy oftituetsire that the reference refers to
and modify that locally, you can do the following:

Perl Training Australia (http://www.perltraining.com/x

Chapter 3. References and complex data structures

sub ref_print_unchosen {
my ($chosen, $colours) = @_;

my @chosen @$chosen; # this @chosen is now a copy
my @colours = @$colours; # this @colours is now a copy

!

-—" The above paragraph discusses a concept that is often referred to as call by reference.
Typically when we call Perl subroutines we consider them to be called by value. Technically,
however, this is incorrect.

In the case where we pass scalars into a subroutine, we usually shit them from @_or we copy
the contents from @_into another list. However if we instead modify the contents of @_directly we
will actually be modifying the contents of the variables given to the subroutine.

We don’t recommend this practice, however, as it makes your code much harder for other
people to maintain. It's much better to do something like the following:

($x, $y) = modify($x, $y);

If you do use this functionality, be careful, as it's a fatal error to attempt to modify a read-only
value, such as a literal string.

Anonymous data structures

We can use anonymous data structures to create complextdatages without having to declare
many temporary variables. Anonymous arrays are createdibg square brackets instead of round
ones. Anonymous hashes use curly braces instead of rousd one

the old two-step way:

my @array = qw(a b c d);

my $array _ref = \@array;

if we get rid of $array_ref, @array will still hang round usi ng up
memory. Here's how we do it without the intermediate step, b y

creating an anonymous array:

my $array _ref = [a’, 'b’, 'c¢’, 'd7;

look, we can still use qw() too...

my $array _ref = [qw(a b c d)];

more useful yet, we can put these anon arrays straight into a hash:

my %transport = (
‘cars’ = > [qw(toyota ford holden porsche)],
‘planes’ > [qw(boeing harrier)],
‘boats’ > [qw(clipper skiff dinghy)],

)

The same technique can be used to create anonymous hashes:

Perl Training Australia (http://www.perltraining.com/x 11

Chapter 3. References and complex data structures

The old, two-step way:
my %hash = (

a = 1,
b => 2,
=> 3

)
my $hash_ref = \%hash;

the quicker way, with an anonymous hash:

my $hash_ref = {
a => 1,
b = 2,
c => 3

h
Data is pulled out of an anonymous data structure using tlogvarotation:

my $value = $hash_ref->{a};
print $value; # prints 1

Exercise

1. Change your previous program to initialigends_ref ~ using an anonymous array
constructor. You should no longer need your origi@alends array. Test that your program
still works.

Complex data structures

12

References are most often used to create complex datasgsicBince references are scalars, they
can be used as values in both hashes and arrays. This makssililp to create both deep and
complex multi-dimensional data structures. These arereovmore deeply in Appendix A.

The use of references in data structures allows you to caeedgs of arrays, arrays of hashes, hashes
of arrays and hashes of hashes. We saw an example of a hasaysfiarthe previous section. Here
is an example of an array of hashes:

my %alice = (
name => "Alice Jane",
age => 34,
employeenumber => 12003,
)
my %bob = (
name => "Bob Jane",
age => 32,
employeenumber => 12345,

);

my @employees = (
\%alice,
\%bob,

)

to print out Alice’s employee number:
print $employees[0]->{employeenumber};

Perl Training Australia (http://www.perltraining.com/x

Chapter 3. References and complex data structures

Or, to use anonymous data structures
my @employees2 = (
{

name => "Alice Jane",
age => 34,
employeenumber => 12003,

name => "Bob Jane",
age => 32,
employeenumber => 12345,

)

to print out Bob's age:
print $employees2[1]->{age};

Exercises

1. Create data structures as follows:

a. Create a hash calleghizza_prices ~ which contains prices for small, medium and large
pizzas.

b. Create a hash callegbasta_prices which contains prices for small, medium and large
serves of pasta.

c. Create a hash calleghilkshake_prices ~ which contains prices for small, medium and
large milkshakes.

d. Create a hash calleémenucontaining references to the above hashes, so that givereafy
food and a size you can find the price of it. Don’t forget thatiloash must contain both
keys (the type of food), and values (a reference to the datetate containing the prices).

2. Write code which accepts food-type and size from the uséreturns the price for the food.

3. Convert the above hash to use anonymous data structomgst@ hash of hashes) instead of the
original three pizza, pasta and milkshake hashes, and ynyalifr customer code appropriately.

4. Add a new element to your foods hash which contains thepiof salads. Rather than adding
this in when you create the hash, instead add it separately.

5. Create a subroutine which can be passed a scalar and efferg@ince. Check whether there is
an element in the hash which has the scalar as its key. Hmtxiggs for this.

Answers for the above exercises can be founskémcises/answers/food.pl

Perl Training Australia (http://www.perltraining.com/x 13

Chapter 3. References and complex data structures

Disambiguation and curly braces

Often in our code, we need to treat a reference as its undgrtiata structure. For a simple
reference, this is easy; we prepend the reference with thi@ppate sigil and it just works:

my $hashref = { a => 1, b => 2, ¢c => 4, d => 8 };
foreach (keys %$hashref) {

}

What can cause us problems is when the reference isn’t sdesikiviat should Perl do, in the
following case?

my @result = @$array[0];

Does this mean:

- Find @array .
« Look up indexo: s$array[0]
« Turn that §array[0]) into an array@$array[0]

or:

« Find the array referencgrray
- Treat that as an arra@sarray
- Take an array slice with index @$array[0]

Perl does the latter, however if that is what we wanted thesheelld have writtegs$array[0] , as
that explicitly returns a single (scalar) result.

We can force Perl to evaluate our expression as the firspirgttion above by using curly braces.
This allows us to clearly write:

my @result = @{$array[0]};

We canuse{.} ,@{.} Orwu{.} syntaxto evaluate any expression and dereference the.resul

Data::Dumper

14

Typically, to print out a data structure you have to undersits underlying structure and then write
a number of loops to print it out in full. If the structure idatvely simple such as a hash of hashes
of values, or even a hash of hash of arrays this isn’t too diffic

However, often data structures are very complex, and regagiand printing these structures can be
a tiresome exercise. It's also an unnecessary one, as dlathevork has already been done for you.
To save you from having to write specialised printing codeviary program for debugging purposes,
there’s a special library you may find useful call@da::Dumper

Data::Dumper provides a function which takes Perl data structures anstillem into human
readable strings representing the data with in them. It eausled just like this:

#!/usr/bin/perl -w
use strict;
use Data::Dumper;

Perl Training Australia (http://www.perltraining.com/x

Chapter 3. References and complex data structures

my %HoH = (
Jacinta => {
age => 26,
favourite_colour => "blue",
sport => "swimming",
language => "Perl",

Paul => {
age => 27,
favourite_colour => "green",
sport => "cycling",
language => "Perl",

)
print Dumper \%HoH;

This will print out something similar to:

$VARL = {
'Paul’ => {
‘language’ => 'Perl’,
‘favourite_colour’ => ’green’,
'sport’ => 'cycling’,
‘age’ => 27
h
‘Jacinta’ => {
‘language’ => 'Perl’,
‘favourite_colour’ => ’blue’,
'sport’ => ’swimming’,
‘age’ => 26

Not only is this easy to read, but it’s also perfectly validiRede. This means you can use
Data::Dumper to easily give you a structure that you can paste into angitoggram, or which can be
'serialised’ to a file and re-created at a later datga::Dumper has a lot more uses beyond simple
debugging.

Dumper expects to be given one or more references to data strugtudesnp. Ifbumper is provided
with a hash or array then every element of the array, or eveyyakd value of the hash, will be
considered a separate data structure, and dump separféielyesults are not particularly useful:

result of: print Dumper %HoH;
$VARL = 'Paul’;
$VAR2 = {
‘language’ => 'Perl’,
‘favourite_colour’ => 'green’,
'sport’ => 'cycling’,
‘age’ => 27
h
$VAR3 = 'Jacinta’;
$VAR4 = {
‘language’ => 'Perl’,
‘favourite_colour’ => ’blue’,
'sport’ => ’swimming’,
‘age’ => 26
h

Perl Training Australia (http://www.perltraining.com/x 15

Chapter 3. References and complex data structures

\: You can read more about Data:Dumper 0n page 882 of the Camel book or in

perldoc Data::Dumper .

Exercises

1. UseData::Dumper to print out your data structures from the previous exercise

2. Useperldoc Data::Dumper to read aboubata::Dumper 's many options and configuration
variables.

Chapter summary

16

References are scalar data consisting of the memory adufragsece of Perl data, and can be
used in arrays, hashes, and other places where you wouldnesenal scalar

References can be used to create complex data structupasganultiple arrays or hashes to
subroutines, and in object-oriented Perl.

References are created by prepending a backslash to alearahbe.

References are dereferenced by replacing the name partoifdle name (e@o in $foo) with a
reference, for example replae with $foo_ref to get$sfoo_ref

References to arrays and hashes can also be dereferenugthesarrow > notation.
References can be passed to subroutines as if they weresscala
References can be included in arrays or hashes as if theyseala's.

Anonymous arrays can be made by using square bracketsdrasteaund; anonymous hashes can
be made by using curly brackets instead of round. These casdigned directly to a reference,
without any intermediate step.

Data::Dumper allows complex data structures to be printed out verbatithauit requiring full
knowledge of the underlying data structure.

Perl Training Australia (http://www.perltraining.com/x

Chapter 4. External Files and Packages

In this chapter...

In this chapter we’ll discuss how we can split our code infoesate files. We'll discover Perl’s
concept of packages, and how we can use them to make our codeabast and flexible.

Splitting code between files

When writing small, independent programs, the code canliydamcontained within a single file.
However there are two common occurrences where we woulddikave our programs span
multiple files. When working on a large project, often withmgalevelopers, it can be very
convenient to split a program into smaller files, each withararspecialised purpose. Alternatively,
we may find ourselves working on many programs that share somenon code base. This code
can be placed into a separate file which can be shared acmgg®prs. This saves us time and effort,
and means that bug-fixes and improvements need to be madmaengngle location.

Require
Perl implements a number of mechanisms for loading code &xternal files. The most simplest of
these is by using thequire function:

require ‘file.pl’;

Perl is smart enough to make sure that the same file will natddaded twice if it's required through
the same specified name.

The file is only included once in the following case:
require ‘file.pl’;
require ‘file.pl’;

Required fileanustend with a true value. This is usually achieved by having thal fitatement of
the file being:

'y

Conflicts can occur if our included file declares subroutines with the same name as those that
appear in our main program. In most circumstances the subroutine from the included file takes
precedence, and a warning is given.

We will learn how to avoid these conflicts later in this chapter when we discuss the concept of
packages.

Perl Training Australia (http://www.perltraining.com/x 17

Chapter 4. External Files and Packages

The use of require has been largely deprecated by the introduction of modules and the use
keyword. If you're writing a code library from scratch we recommend that you create it as a
module. However, require is often found in legacy code and is a useful thing to understand.

Any code in the file (except for subroutines) will be executed immediately when the file is
required. The require 0ccurs at run-time, this means that Perl will not throw an error due to a
missing file until that statement is reached, and any subroutines inside the file will not be
accessible until after the require

Variables declared with my are not shared between files, they are only visible inside the block or
file where the declaration occurs. To share packages between files we use package variables
which are covered later in this chapter.

The use of modules (which we will learn about later) allows for external files to be loaded at
compile-time, rather than run-time.

Use strict and warnings

Perl pragmas, such asict andwarnings are lexically scoped. Just like variables declared with
my, they last until the end of the enclosing block, file or eval.

This means that you can turn strict and warnings on in one fileowt it influencing other parts of
your program. Thus, if you're dealing with legacy code, tlgear new libraries, modules and classes
can be strict and warnings compliant even though the oldge eonot.

Example

The use ofequire is best shown by example. In the following we specify two filegetings.pl
andprogram.pl . Both are valid Perl programs on their own, although in thisegGreetings.pl
would just declare a variable and a subroutine, and thenAsitve do not intend to execute
Greetings.pl ~ on its own, it does not need to be made executable, or inclstielaang line.

Our library code, to be included.

Greetings.pl

Provides the hello() subroutine, allowing for greetings

in a variety of languages. English is used as a default
if no language is provided.

use strict;
use warnings;

my %greeting = (

en => "Hello",
‘en-au’ => "G’'day",

fr => "Bonjour",
ip => "Konichiwa",
zh => "Nihao",

18 Perl Training Australia (http://www.perltraining.com/x

Chapter 4. External Files and Packages

sub hello {
my $language = shift || "en";

my $greeting = $greeting{$language}
or die "Don’t know how to greet in $language";

return $greeting;

}

1;

Our program code.

program.pl

Uses the Greetings.pl file to provide another hello() subr outine

use strict;

Get the contents from file.pl
require "Greetings.pl";

print "English: ", hello("en"), "\n"; # Prints "Hello"
print "Australian: ", hello("en-au"),"\n"; # Prints "G'da y"
Exercises

1. Create a file callestyTest.pl Define at least two functionsass andfail which print some
amusing output. Make sure that it usegt

2. Test that your code compiles by runniper! -c MyTest.pl. (The-c tells Perl to check your
code).

3. Create a simple Perl script which requikggest.pl and calls the functions defined within.

Introduction to packages

The primary reason for breaking code into separate filesimpoove maintainability. Smaller files
are easier to work with, can be shared between multiple progrand are suitable for dividing
between members of large teams. However they also haveptiodilems.

When working with a large project, the chances of naming adgefincreases. Two entirely different
files may have two different subroutines with the same namegher it is only the last one loaded
that will be used by Perl. Files from different projects ma&rb-used in new developments, and
these may have considerable name clashes. Multiple filealsammake it difficult to determine
where subroutines are originally declared, which can makeidging difficult.

Perl'spackagesre designed to overcome these problems. Rather than jtistgpeode into separate
files, code can be placed into independent packages, edtitsvitvn namespace. By ensuring that
package names remain unique, we also ensure that all sit@eand variables can remain unique

and easily identifiable.

A single file can contain multiple packages, but conventicteties that each file contains a package
of the same name. This makes it easy to quickly locate the icoaley given package.

Perl Training Australia (http://www.perltraining.com/x 19

Chapter 4. External Files and Packages

Writing a package in Perl is easy. We simply useghkage keyword to change our current
package. Any code executed from that point until the endettirrent file or block is done so in the
context of the new package.

By declaring that all our code is in the "Greetings" package ,
we can be certain not to step on anyone else’'s toes, even if
they have written a hello() subroutine.

package Greetings;

use strict;
use warnings;

my %greeting = (

en => "Hello",
‘en-au’ => "G’day",
fr => "Bonjour",
ip => "Konichiwa",
zh => "Nijhao",

);

sub hello {

my $language = shift || "en";

my $greeting = $greeting{$language}
or die "Don’t know how to greet in $language";

return $greeting;

}
1
The package that you're in when the Perl interpreter sthdfofe you specify any package) is called

main . Package declarations use the same rulegabat is, it lasts until the end of the enclosing
block, file, or eval. Here’s an example:

#!/usr/bin/perl -w

use strict;

use warnings;

sub hello { print "This is hello in the main package\n"; }

{

package Foo;
sub hello { print "This is hello in the Foo package\n"; }
}

Here we're back in the main package again.

hello(); # main’s hello

Perl convention states that package names (or each paraokage name, if it contains many parts)
starts with a capital letter. Packages starting with lovase are reserved for pragmas (such as
strict).

20 Perl Training Australia (http://www.perltraining.com/x

Chapter 4. External Files and Packages

The scoping operator

Being able to use packages to improve the maintainabiliguofcode is important, but there’s one
important thing we have not yet covered. How do we use sulmesitvariables, or filehandles from
other packages?

Perl provides acoping operatoim the form of a pair of adjacent colons. The scoping operator
allows us to refer to information inside other packages,iangually pronounced "double-colon".

require "Greetings.pl"

This calls the hello() subroutine in our main package,
printing "Greetings Earthling".
print hello(),"\n";

Greetings in English.
print Greetings::hello("en"),"\n";

Greetings in Japanese.
print Greetings::hello("jp"),"\n";

sub hello {
return "Greetings Earthling";

}

Calling subroutines like this is a perfectly acceptableralative to exporting them into your own
namespace (which we’ll cover later). This makes it veryiclelaere the called subroutine is located,
and avoids any possibility of an existing subroutine claghwith that from another package.

Occasionally we may wish to change the value of a variabledtler package. It should be very
rare that we should need to do this, and it's not recommendediy so unless this is a documented
feature of your package. However, in the case where we dotoedalthis, we use the scoping
operator again.

use Carp;
Turning on $Carp::Verbose makes carp() and croak() provid e
stack traces, making them identical to cluck() and confess 0.

This is documented in 'perldoc Carp'.
$Carp::Verbose = 1;

There’s a shorthand for accessing variables and subrauitithemain package, which is to use
double-colon without a package name. This meanssthied is the same asmain::foo

When referring to a variable in another package, the sigil (punctuation denoting the variable
type) always goes before the package name. Hence to get to the scalar $bar in the package Foo,
we would write $Foo::bar and not Foo::$bar

It is not possible to access lexically scoped variables (those created with my) in this way.
Lexically scoped variables can only be accessed from their enclosing block.

Perl Training Australia (http://www.perltraining.com/x 21

Chapter 4. External Files and Packages

Exercises

1. Print out the version of thewdmodule installed on your training server. The version nunibe
in $Cwd::VERSION .

2. Look at the documentation for tlmarp module using th@erldoc Carp command. This is one
of Perl’s most frequently used modules.

Package variables and our

It is not possible to access lexically scoped variabless@gtayeated witlmy) outside of their

enclosing block. This means that we need another way toecvaaiables to make them globally
accessible. These global variables are cglackage variablesand as their name suggests they live
inside their current package. The preferred way to creatkggge variables, under Perl 5.6.0 and
above, is to declare them with ther statement. Of course, there are alternatives you can uke wit
older version of Perl, which we also show here:

package Carp;
our $VERSION = '1.01"; # Preferred for Perl 5.6.0 and above

use vars qw/$VERSION/; # Preferred for older versions
$VERSION = ’'1.01%

$Carp::VERSION = '1.01’; # Acceptable but requires that we then
always use this full name under strict

In all of the cases above, both our package and external @daacess the variable using
$Carp::VERSION .

Exercises

1. Change youmyTest.pl file to include a package nanwTest
2. Update your program to call the MyTest functions usingstt@ping operator.

3. Create a package varialsiess_mark usingour insideMyTest.pl which defines an appropriate
pass mark.

4. In your Perl script, create a loop which tests 10 randombrarsifor pass or fail with reference
to thespass_mark package variable. Print the appropripées orfail message.

Answers for the above exercises can be founskémcises/answers/MyTest.pl and
exercises/answers/packages.pl

Chapter summary

« A package is a separate namespace within Perl code.

22 Perl Training Australia (http://www.perltraining.com/x

Chapter 4. External Files and Packages

A file can have more than one package defined within it.
The default package isain .

We can get to subroutines and variables within packagesihy tlee double-colon as a scoping
operator for exampleoo::bar() calls thebar() subroutine from th&oo

To write a package, just wrifeackage package_name Where you want the package to start.

Package declarations last until the end of the enclosinckbfde or eval (or until the next
package statement).

Package variables can be declared withdiiekeyword. This allows them to be accessed from
inside other packages.

Therequire keyword can be used to import the contents of other files ferims program.

Files which are included usingquire must end with a true value.

Perl Training Australia (http://www.perltraining.com/x 23

Chapter 4. External Files and Packages

24 Perl Training Australia (http://www.perltraining.com/x

Chapter 5. Modules

In this chapter...

In this chapter we’ll discuss modules from a user’s stanaipie’ll find out what a module is, how
they are named, and how to use them in our work.

In the remainder of the chapter, we will investigate how tdevour own modules.

Module uses

Perl modules can do just about anything. In general, how#vwere are three main uses for modules:

« Changing how the rest of your program is interpreted. Formgpla, to enforce good coding
practices (se strict) or to allow you to write in other languages, such as Latia (
Lingua::Romana::Perligata), or to provide new language featurese(Switch).

- To provide extra functions to do your workse Carp Oruse CGI qw/:standard/).

- To make available new classesq HTML::Template Oruse Finance::Quote) for object oriented
programming.

Sometimes the boundaries are a little blurred. For exartipe,gI module provides both a class and
the option of extra subroutines, depending upon how youitoad

What is a module?

A module is a separate file containing Perl source code, whildaded and executed at compile
time. This means that when you write:

use CGl,

Perl looks for a file calle¢Gl.pm (.pm forPerl Modulg, and upon finding it, loads it in and executes
the code inside it, before looking at the rest of your program

\: Sometimes you need to tell Perl where to look for your Perl modules, especially if
some of them are installed in a non-standard place. Like many things in Perl, There’s More Than
One Way To Do It. Check out perldoc -q library for some of the ways to tell Perl where your
modules are installed.

Sometimes you might choose to pass extra information to tieuie when you load it. Often this is
to request the module create new subroutines in your naroespa

use CGI gw(:standard);
use File::Copy qw(copy);

Note the use ofw() , this is a list of words (in our case, just a single word). pgsssible to pass
many options to a module when you load it. In the case aboveg asking thecGl module for the
:standard bundle of functions, and thele::copy module for just theopy subroutine.

Perl Training Australia (http://www.perltraining.com/x 25

Chapter 5. Modules

Each module has a different set of options (if any) that it will accept. You need to check the
documentation of the module you’re dealing with to which (if any) are applicable to your needs.

To find out what options exist on any given module read its documentation: perldoc modul e_nane.

Exercise

1. UsingFile:Copy ~make a copy of one of your files. If you're eager, ask the uséchfile to
copy and what to name the copy.

Where does Perl look for modules?

Perl searches through a list of directories that are detertnivhen the Perl interpretor is compiled.
You can see this list (and all the other options Perl was cladpiith), by usingper! -V.

The list of directories which Perl searches for modulesadsest in the special variab@INc It's
possible to changeIncso that Perl will search in other directories as well. Thigrportant if you
have installed your own private copy of some modules.

Of course, being Perl, there’s more than one way to chage Here are some of the ways to add
to the list of directories insid@INC

« Call Perl with thel command-line switch with the location of the extra diregttr search. For
example:

perl -l/path/to/libs
This can be done either in the shebang line, or on the comiiraed-

« Use thaib pragma in your script to inform Perl of extra directoriest Eample:
use lib "/path/to/libs";

« Setting thePERL5LIB environment variable with a colon-separated list of dweets to search.
Note that if your script is running with taint checks this @omment variable is ignored.

Sinceuse statements occur before regular Perl code is executed fyimagli@Incdirectly usually
does not have the desired effect.

Finding installed modules

26

Perl comes with many modules in its standard distributiau ¥an get a list of all of them by doing
aperldoc perlmodlib. The Camel book describes the standard modules in chaftensi332
(chapter 7, 2nd Ed).

B

Besides from the modules in the standard distribution, you can also see any other modules that
were installed on your system by using perldoc perllocal . Generally this file only lists other
modules that were installed by hand, or using one of the CPAN installers (more on this later).

Perl Training Australia (http://www.perltraining.com/x

Chapter 5. Modules

Modules installed through your operating system’s packaging system may not appear in
perldoc perllocal .

You can get more information on any module that you have liestdy usingperldoc nodul e_nane.
For exampleperldoc Englishwill give you information about thenglish module.

Most importantly, there’s a great resource for finding medwdalled theComprehensive Perl
Archive Networkor CPANfor short. The CPAN website (http://www.cpan.org/) prasdnany
ways of finding the modules you're after and browsing thetwtoentation on-line. It's highly
recommended that you become familiar with CPAN’s searctufea, as many common problems
have been solved and placed in CPAN modules.

Exercise

1. Open a web browser to CPAN’s search site (http://segsah.org) and spend a few minutes
browsing the categories provided.

2. Perform a search on CPAN for a problem domain of your chéiig®u can't think of one,
search orcGl, XMLOr SOAR

Using CPAN modules

At the time of writing, CPAN provides more than 5,500 sepagatd freely available modules. This
makes CPAN an excellent starting point when you wish to findluhes to help solve your particular
problem. However, you should keep in mind that not all CPANdoies are created equal. Some are
much better documented and written than others. Some (suttie@G! or DBI) modules have
become de-facto standards, whereas others may not be usegdye except the module’s author.

As with any situation when you're using third party code, whould take the time to determine the
suitability of any given module for the task at hand. Howeirealmost all circumstances it's better
to use or extend a suitable module from CPAN rather thandrigrre-invent the wheel.

Many of the popular CPAN modules are pre-packaged for pomarating systems. In addition,
thecpaNnmodule that comes with Perl can make the task of finding artdllimgy modules from
CPAN much easier.

Most CPAN modules come witReaDMENd/orNSTALL files which tell you how to install the
modules. However in almost every case, the process is the:sam

perl Makefile.PL
make

make test
make install

If you install your module in a different directory than yasther Perl modules you may have to use
thelib pragma, mentioned in the previous section, to tell Perl ehefind your files. Once a
module is installed, you can use it just like any other Pertioie.

Perl Training Australia (http://www.perltraining.com/x 27

Chapter 5. Modules

The double-colon

Sometimes you’'ll see modules with double-colons in theimes, likeFinance::Quote
Quantum::Superposition , Or CGl:Fast . The double-colon is a way of grouping similar modules
together, in much the way that we use directories to groupthay similar files. You can think of
everything before the double-colon as the category thatibdule fits into.

In fact, the file analogy is so true-to-life that when Perlrsbas for a module, it converts all
double-colons to your directory separator and then lookghat when trying to find the appropriate
file to load. ScFinance::Quote looks for a file namecduote.pm in a directory calledrinance . That
two modules are in the same category doesn’t necessarily thaathey're related in any way. For
exampleFinance:Quote andFinance::QuoteHist have very similar names, and their maintainers
even enjoy very similar hobbies, they certainly have simikes, but neither package shares any
code in common with the other.

It's perfectly legal to have many double-colon separatormodule names, so
Chicken::Bantam::SoftFeather::Pekin is a perfectly valid module name.

Writing modules

28

Modules contain regular Perl code, and for most modulesdlemajority of that code is in
subroutines. Sometimes there are a few statements whteliga variables and other things before
any of those subroutines are called, and those get executeddiately. The subroutines get
compiled and tucked away for later use.

Besides from the code that’s loaded and executed, two meadphings happen. Firstly, if the last
statement in the module did not evaluate to true, the Perpdenthrows an exception (usually
halting your program before it even starts). This is so thabaule could indicate that something
went wrong, although in reality this feature is almost nayed. Virtually any Perl module you care
to look at will end with the statement to indicate successful loading.

The other thing that happens when a modulaésd is that itsimport - subroutine (if one exists) gets
called with any directives that were specified onike line. This is useful if you want to export
functions or variables to the program that’s using your ni@diar functional programming but is
almost never used (and very often discouraged) for objéentad programming.

As you've no doubt guessed by now, modules and packagesgithand-in-hand. We know how to
use a module, but what are the rules on writing one? Well, idpethe is this:

A module is a file that contains a package of the same name.

That’s it. So if you have a package calle@e::Fruit:Citrus::Lime , the file would be called
Tree/Fruit/Citrus/Lime.pm , and you would use it withse Tree::Fruit::Citrus::Lime;

A module can contain multiple packages if you desire. So éwveangh the module is called
Chess::Piece , it might also contain packages fohess::Piece::Knight and

Chess::Piece::Bishop . It's usually preferable for each package to have its ownuteatherwise
it can be confusing to your users how they can load a partipalekage.

When writing modules, it's important to make sure that theyhaell-named, and even more
importantly that they won't clash with any current or futumedules, particularly those available via
CPAN. If you are writing a module for internal use only, youncdart its name withocal:: ~ which

is reserved for the purpose of avoiding module name clashes.

Perl Training Australia (http://www.perltraining.com/x

Chapter 5. Modules

\: You can read more about writing modules in perldoc perlmodlib , and a little on
pages 554-556 of the Camel book.

Use versus require

Perl offers several different ways to include code from oleeifito anotheruse is built on top of
require and has the following differences:

« Files which araise d are loaded and executed at compile-time, not run-times igans that all
subroutines, variables, and other structures will exifbteeyour main code executes. It also
means that you will immediately know about any files that Bedld not load.

- use allows for the import of variables and subroutines from thedupackage into the current one.
This can make programming easier and more concise.

- Files called withuse can take arguments. These arguments can be used to recpat fgatures
that may be provided by some modules.

Both methods:

« Check for redundant loading, and will skip already loadeskfil
- Raise an exception on failure to find, compile or execute the fi
- Translate: into your systems directory separator (covered more shortl

Where possiblese and Permodulesare preferred oveequire

Warnings and strict

When your module is used by a script, whether or not it runk wirnings depends upon whether
the calling script is running with warnings turned on. You ¢and should) invoke these warnings
pragma to turn on warnings for your module without changimagnings for the calling script.

Your modules should always use strict.

use strict;
use warnings;

Exercise

This exercise will have you adapt youyTest.pl code to become a module. There’s a list at the end
of this exercise of things to watch out for.

1. Create a directory namen .

2. Move youmvyTest.pl ~ file into yourlio directory and rename it tayTest.pm .
3. Make sureviyTestpm useSstrict andwarnings .

4. Test that your module has no syntax errors by runpiny-c MyTest.pm.

5. Change your Perl script from beforeds: your module. Check that everything still works as
you expect.

Perl Training Australia (http://www.perltraining.com/x 29

Chapter 5. Modules

6. Add a print statement to your module (outside any submes)i This should be printed when
the module is loaded. Check that this is so.

Answers can be found kxercises/answers/lib/MyTest.pm andexercises/answers/modules.pl

Things to remember...

The above exercises can be completed without reference foltbwing list. However, if you're
having problems, you may find your answer herein.

« A module is a file that contains a package of the same name.

+ Perl modules must return a true value to indicate succelesfding. (Put; at the end of your
module).

« To use a module stored in a different directory, add thisoding to the@INcarray. (Puuse lib
‘path/to/modules/’ before the othetise lines.

« To call a subroutine which is inside a module, you can acdeda the double-colon. Eg:
MyModule::test();

Exporting and importing subroutines

30

Writing your ownimport function for each and every module would be a tiresome ard-pnone
process. However, Perl comes with a module cattgdrier , which provides a highly flexible
interface with optimisations for the common case.

Exporter Works by checking inside your module for three special datactires, which describe
both what you wish to export, and how you wish to export thelrese structures are:

« @EXPOR3ymbols to be exported into the user’'s name space by default
« @EXPORT_0symbols which the user can request to be exported

+ %EXPORT_TAGHat allows for bundles of symbols to be exported when the niespiests a special
export tag.

@ISA

To take advantage @xporter 's import function we need to let Perl know that our package has a
special relationship with thexporter package. We do this by telling Perl that waderit from

Exporter . Our package and the rest of our program does not need to tiewiri an object oriented
style for this to work.

Now when Perl goes looking for theport function it will first look in our package. If it can’'t be
found there, Perl will look for a special array calleadsAa The contents of th@isaarray is
interpreted as a list of parent classes, and each of thelseengbarched for the missing method.

To specify that this package is a sub-class of the Exporteluteave include the following lines:

use Exporter;
our @ISA = qw(Exporter);

Perl Training Australia (http://www.perltraining.com/x

Chapter 5. Modules

use base

An alternative to adding parent modulesatsAyourself is to use thease pragma. This allows you
to declare a derived class based upon the listed parenéslaBsus the two lines above becomes:

use base qw(Exporter);

Thebase pragma takes care of ensuring that Hagorter module is loaded.

Thebase pragma is available for all versions of Perl above 5.6.0.

An example

Here’s an example of just usirgexPORaENd@EXPORT_OKOuUr hypothetical module,
People:Manage is used for managing interpersonal relations.

package People::Manage;
use base qw(Exporter);
use vars gw(@EXPORT @EXPORT_OK);

@EXPORT = gw(invite $name @friends %addresses); # invite is a subroutine
@EXPORT_OK = gw(&taunt $spouse @enemies %postcodes); # so i s taunt

The ampersand in front of subroutines is optional.

Exporting by default

Exporting your symbols by default, by populating thexporarray, means that anyone using your
module will receive these symbols without having to ask fam. This is generally considered to be
bad style, and is sometimes referred to as 'polluting’ tHeeca namespace.

The reason this is considered to be bad style is that theléngy in theuse line to indicate that
anything is being exported. A programmer who is not familiéth the module may inadvertently
define their own subroutines or variables which clash witséhthat are exported. Likewise, a
reviewer examining the code will not easily be able to deteenfrom which module a given
subroutine may have been exported, especially if many nesdare used.

Using the@expPoRarray is highly discouraged.

Using @exPORT_oallows the user to choose which symbols they wish to bring inéir name
space. All other symbols can be accessed by using theirdalle) such as
People::Manage::invite() , when required.

Perl Training Australia (http://www.perltraining.com/x 31

Chapter 5. Modules

An example
Our module:

#Hit#HH People/Manage.pm #it#HHHH#HH

package People::Manage; # create a package of the same name
use strict;

use warnings;

use base qw(Exporter);

List out the things we wish to export
our @EXPORT_OK = qw(invite $name @friends %addressbook
taunt $spouse @enemies @children $pet);

Only package variables can be exported, as such all of these
variables need to be declared with 'our’ not 'my’.

our $name = "Fred";
our $spouse = "Wilma";

our @children = qw(Pebbles);

our @friends = qw(Barney Betty);

our $pet = "Dino";

my $address = "301 CobbleStone Way, Bedrock";

our %addressbook = (
Barney => "303 Cobblestone Way, Bedrock",
Betty => "303 Cobblestone Way, Bedrock",
"Barney’s Mom" => "142 Boulder Ave, Granitetown",

sub invite {
my ($friend, $date) = @_;
return "Dear $friend,\n $spouse and | would love you to come t o".
"dinner at our place ($address) on $date.\n\n".
"Yours sincerely, $name\n";
}
sub taunt {

my ($enemy) = @_;
return "Dear $enemy, my pet $pet has more brains than you.\n" ;

1; # module MUST end with something true

Our program:

i dinner.pl #HHHEHHEHHET

#l/usr/bin/perl -w

use strict;

use People::Manage gw(invite %addressbook); # only using a few things

Invite some people over for dinner.

foreach my $person (keys %addressbook) {
print invite($person,”next Tuesday");

}

32 Perl Training Australia (http://www.perltraining.com/x

Chapter 5. Modules

Importing symbols

Once your module is written and it exports a few symbolstiit’se to use it. This is done with the
use command that we've seen wishict and other modules. We can load our module in three
ways:

« use People:Manage; Which imports all of the symbols stored @People::Manage::EXPORT .

« use People::Manage (); which importsnoneof the symbols in either
@People::Manage::EXPORT OF @People::Manage::EXPORT_OK .

« use People::Manage qw($name $spouse invite); which imports all the listed symbols. If a
symbol is mentioned which is not in eith@People::Manage::EXPORT Of
@People::Manage::EXPORT_OK then a fatal error will occur.

Exercises

These exercises build on the previous exercises.

1. Change your MyTest.pm module to export flaes andfail symbols and import those into
your script. Change your script to callss andfail instead of their fully qualified names.

2. Change your module to export theass_mark variable and use that instead of its fully qualified
name.

Exporting tags

If you wish to export groups of symbols that are related tdhesber, there is amEXPORT_TAGSash
which provides this functionality. This can be used in thikofe manner:

%EXPORT_TAGS = (family => [gqw/$name $spouse @children $pet /1,
social => [qw/%address invite taunt @friends/],

):

Names which appear mEXPORT_TAGSIUSt also appear I@EXPORTr @EXPORT_OKags themselves
cannot be used in either export array.

Importing symbols through tags

Symbols grouped in tags can be imported normally, by spiegjfgach symbol, or by using the tag
provided. This is done by prepending the tag name with a colon

use People::Manage gw/:family/; # Family related informat ion.

use People::Manage qw/:sociall/; # Social-related symbol S.
use People::Manage qw/:family :social/; # Both

Perl Training Australia (http://www.perltraining.com/x 33

Chapter 5. Modules

Exercise

1. In yourmyTest module, create a tag which contains both subroutines anthasmstead of
specifying them both during the import.

Chapter summary

34

A module is a separate file containing Perl source code.
We can use modules by writinge modul e_name; before we want to start using it.

Perl looks for modules in a list of directories that are daieed when the Perl interpretor is
compiled.

Module names may contain double-colons)(in their names such anance::Quote , these tell
where Perl to look for a module (in this case in thence/ directory.

Modules can be used for class definitions or as librariesdarrnon code.
A module can contain multiple packages, but this is oftenchibea.

It's often a good idea to put your own modules into thheal namespace.

Perl Training Australia (http://www.perltraining.com/x

Chapter 6. Using Perl objects

In this chapter...

While discussion of Object Oriented programming is beydreddcope of this course, a great many
modules you may encounter while programming provide anablojeéented interface. This chapter
will teach you what you need to know to use these modules.

\: Perl Training Australia runs a two day course on Object Oriented Programming in
Perl, for more information visit our website (http://www.perltraining.com.au/) or talk to your
instructor during the break.

Objects in brief

An objectis a collection of data (attributes) and subroutines (m@s$hthat have been bundled into a
single item. Objects often represent real-world conceptiggical constructs. For example, an
invoiceobject may have attributes representing the date postezlddée, amount payable, GST,
vendor, and so on. The invoice may have various methodslitbat@r payment to be made, and
possibly a payment to allow the invoice to be disputed.

An object in Perl is a reference to a specially prepared datatsre. This structure may be a hash,
an array, a scalar or something more complex. However, assttreof an object, we don’t need to
know (and should not care) what sort of structure is actusding used. What matters are the
methodsn the object, and how we can use them.

A Perl object is aspecialkind of reference because it also knows what class it beltmds other
words, an object knows what kind of object it is.

Object orientation allows us to creataultiple objects from the same class which can each store
different information and behave differently accordinghat information. This makes it very easy
for the users of those objects, as it makes the informatien Eatrack and manipulate.

Using an object

To use a Perl module which provides an object oriented iaterfveuse it without specifically
importing any methods. For our examples we will usedhemodule, which allows us to interact
with a number of databases, and is one of the most commontiyraedules in Perl.

#l/usr/bin/perl -w

use strict;
use DB, # We can now create DBI objects.

\: To learn more about DBI read perldoc DBI and the pBl homepage
(http://dbi.perl.org/).

Perl Training Australia (http://www.perltraining.com/x 35

Chapter 6. Using Perl objects

Perl Training Australia also runs a Database Programming with Perl course which you may find
of interest. For more information visit our website (http://www.perltraining.com.au/) or talk to your
instructor during the break.

Instantiating an object

To create a new object we call the constructor method ondneeof the class. In many cases this
method is calledew, however withpsl it is calledconnect ; as we get our database handle by
connectingo a database.

use DBI;

Create a DBI object (database connection handle)
my $dbh = DBI->connect($data_source, $username, $passwor d);

By convention, our connected database object is called, for "database handle".

We can create a number of database handles (objects), withceanecting to different databases or
with different usernames and passwords. We could alsoecesatimber of database handles
connecting to the same database. This could potentiallgétiLif we wished to execute multiple
SQL commands simulatenously, particularly if we're degilivith a clustered database system.

use DBI;

my $oracle_dbh = DBI->connect($oracle_dsn, $oracleuser, $oraclepasswd);

my $postgres_dbh = DBI->connect($postgres_dsn, $postgre suser, $postgrespasswd);
my $mysqgl_dbhl = DBI->connect($mysqgl_dsn, $mysqluserl, $ mysglpasswdl);

my $mysql_dbh2 = DBI->connect($mysql_dsn, $mysqgluser2, $ mysqlpasswd?2);

Each of these objects represent a different database dwmand we can call the othesl
methods on these objects from now on. Each object will renggmhich database it refers to
without further work on behalf of the programmer.

Calling methods on an object
As we covered earlier, we can get at the contents of a norrfebrgce by using the arrow operator:

$array_ref->[$index]; # Access array element via array ref erence
$hash_ref->{$key}; # Access array element via hash referen ce

It should come as no big surprise that Perl object methodifmtions, if you'd prefer) can be
accessed the same way:

$object->method(); # Call method() on $object

In a specific case, we can call a method on one obsurobjects as follows:

use DBI;
my $dbh = DBI->connect($data_source, $username, $passwor d);
$dbh->do("UPDATE friends SET phone = '12345678' WHERE name = 'Jack™);

36 Perl Training Australia (http://www.perltraining.com/x

Chapter 6. Using Perl objects

Destroying an object

When you no longer need an object you can let it go out of sgapeas when you no longer need
any other Perl data structure. In some cases the docunmmiadly recommend calling certain clean
up functions. In the case oBlI it is considered polite to disconnect from the database.

$dbh->disconnect();

Chapter summary

- Perl objects are special references to Perl data struatdries know which class they belong to.

- Obiject orientation allows us to create multiple objectsrfithe same class to store different
information.

« To use a Perl class we juste the module.

- To create an object we call the constructor method on the.clas
- Many objects of the same class can be created.

« To call a method on an object we use the arrow operator.

- Obijects are destroyed when they go out of scope.

Perl Training Australia (http://www.perltraining.com/x 37

Chapter 6. Using Perl objects

38 Perl Training Australia (http://www.perltraining.com/x

Chapter 7. Advanced regular expressions

In this chapter...

This chapter builds on the basic regular expressions tandtdrl Training Australia’sntroduction
to Perl course. We will learn how to handle data which consists oftiplel lines of text, including
how to input data as multiple lines and different ways of perfing matches against that data.

Assumed knowledge

You should already be familiar with the following topics:

« Regular expression meta characters
« Quantifiers

« Character classes and alternation

« Them// matching function

« Thes/i/ substitution function

« Matching strings other than with the=~ matching operator

\: Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2,
2nd Ed) of the Camel book, and further information is available in the online Perl documentation
by typing perldoc perlre .

Capturing matched strings to scalars

Perl provides an easy way to extract matched sections ofudaregxpression for later use. Any part
of a regular expression that is enclosed in parentheseptisrea and stored into special variables.
The substring that matches first set of parentheses willdsedins1, and the substring that matches
the second set of parentheses will be storextiand so on. There is no limit on the number of
parentheses and associated numbered variables that yogean

10w)(\Ww)/; # matches 2 word characters and stores them in $1 , $2
1(\w+)/; # matches one or more word characters and stores the m in $1

Parentheses are numbered from left to right byaheningparenthesis. The following example
should help make this clear:
$_ = "fish";
1((Ww)(\Ww))/; # captures as follows:
$1 = "fi", $2 = "f", $3 = "I

$_ = "1234567890";

1(\d)+/; # matches each digit and then stores the last digit
matched into $1
1(\d+)/; # captures all of 1234567890

Perl Training Australia (http://www.perltraining.com/x 39

Chapter 7. Advanced regular expressions

Evaluating a regular expression in list context is anothay % capture information, with
parenthesised sub-expressions being returned as a listalMese this instead of numbered variables
if we like:

$_ = "Our server is training.perltraining.com.au.";

my ($full, $host, $domain) = /(([\w-]+)\.((\w.-]+))/;

print "$1\n"; # prints "training.perltraining.com.au."

print "$full\n"; # prints "training.perltraining.com.au

print "$2 : $3\n"; # prints "training : perltraining.com.au .
print "$host : $domain\n" # prints "training : perltraining .com.au."

A regular expression that fails to match the given string does not always reset $1, $2 etc. Hence
code similar to the following may cause unexpected surprises:

while(<>) {
check that we have something that looks like a date in
YYYY-MM-DD format.

if(/(\d{4})-(\d{2})-(\d{2})/) {
print STDERR "valid date\n";
}

if($1 >= $recent_year) {
print RECENT_DATA $_;
}
else {
print OLD_DATA $_;
}
}

In this code, should we have a line which doesn’t match the regular expression for a valid date,
this line will be printed to whichever file the previous valid line was printed to. This may result in
lines with dates similar to "1901-3-23" being printed to RECENT_DATAOr lines with dates like
"2003-1-1" being printed to OLD_DATA

Extended regular expressions

40

Regular expressions can difficult to follow at times, esalécif they're long or complex. Luckily,
Perl gives us a way to split a regular expression acrossphallthes, and to embed comments into
our regular expression. These are knowexended regular expressians

To create a extended regular expression, we use the speaiaitch. This has the following effects
on the match part of an expression:

- Spaces (including tabs and newlines) in the regular exioresase ignored.
« Anything after an un-escaped hasghi§ ignored, up until the end of line.

Extended regular expressions do not alter the format ofébersd part in a substition. This must still
be written exactly as you wish it to appear.

If you need to include a literal space or hash in an extendpression you can do so by preceeding
it with a backslash.

By using extended regular expressions, we can change this:

Parse a line from ’Is -I
MOw-1+H)\s+(\d+H)\s+(\w+H)\s+(\w+)\s+(\d+)\s+(\w+\s Hd+H\s+N\d:[+)\s+(.*)$/;

Perl Training Australia (http://www.perltraining.com/x

Chapter 7. Advanced regular expressions

into this:
Parse a line from ’ls -I

/

n # Start of line.
(Dw-]+)\s+ # $1 - File permissions.
(\d+)\s+ # $2 - Hard links.
(\w+)\s+ # $3 - User

(\Ww+)\s+ # $4 - Group

(\d+)\s+ # $5 - File size
(\WwHsH\d+\s+[\d:]+)\s+ # $6 - Date and time.

(&) # $7 - Filename.

$ # End of line.

IX;

As you can see, extended regular expressions can make yarinoach easier to read, understand,
and maintain.

Exercise
For these exercises you may find using the following striectigeful:

while(<>) {
chomp;

my ($origin, date, page) = (/PATTERN/); # put your regexp her e

1. Web server access logs typically contain long lines afrimation, only some of which is of
interest at any given time. In thecess-ptalog file you'll see an example taken from Perl
Training Australia’s webserver.

Write a regular expression which captures the requestmtige access date and requested
page. Print this out for each access in the file.

You can find an answer to this exercisei@rcises/answers/log-process.pl

Advanced Exercise

1. Split tab-separated data into an array then print out ekrhent using &reach loop (an
answer’s inexercises/answers/tab-sep.pl , an example file is imxercises/tab-sep.txt).

Greediness

Regular expressions are, by default, "greedy". This mdaatsaany regular expression, for instance
*, will try to match the biggest thing it possibly can. Greeslia is sometimes referred to as
"maximal matching".

Perl Training Australia (http://www.perltraining.com/x 41

Chapter 7. Advanced regular expressions

Greediness is also left to right. Each section in the regaxpression will be as greedy as it can
while still allowing the whole regular expression to matthassible. For example,

$ = "The cat sat on the mat";

/(e t)(*)(m.*t)/;

print $1; # prints "cat sat on t"
print $2; # prints "he "

print $3; # prints "mat";

It is possible in this example for another set of matches twod he first expressiotrt could
have matchedat leaving sat on the to be matched by the second expressiorHowever, to do
that, we need to stop*t from being so greedy.

To make a regular expression quantifier not greedy, follamitth a question mark. For exampte .
This is sometimes referred to as "minimal matching".

$_ = "The fox is in the box.";
1(F.*x)/; # greedy -- $1 = “fox is in the box"
1(f.*?2x)/, # not greedy - $1 = "fox"
$_ = "abracadabra”;
l(a.*a)/ # greedy -- $1 = "abracadabra"
/(a.*?a)/ # not greedy -- $1 = “"abra"
l(a.*?a)(.*a)/ # first is not greedy -- $1 = "abra"

second is greedy -- $2 = "cadabra"
l(a.*a)(.*?a)/ # first is greedy -- $1 = "abracada"

second is not greedy -- $2 = "bra"

/(a.*?a)(.*?a)/ # first is not greedy -- $1 = "abra"
second is not greedy -- $2 = "ca"

Exercise

1. Write a regular expression that matches the first and lasiswon a line, and print these out.

More meta characters

Here are some more advanced meta characters, which buitdt@mes covered in the Introduction
to Perl course.

Table 7-1. More meta characters

Meta character Meaning

c X Control character, i.€CTRL -x

0 nn Octal character represented iy

X nn Hexadecimal character representechby
| Lowercase next character

42 Perl Training Australia (http://www.perltraining.com/x

Chapter 7. Advanced regular expressions

Meta character Meaning

c

Uppercase next character

Lowercase untile

Uppercase untie
Quote (disable) meta characters uil
End of lowercase/uppercase/quote

m |O |[C |

search for the C++ computer language:

[C++/ # wrong! regexp engine complains about the plus signs
IC\H\+/ # this works

NQC++\E/ # this works too

search for "bell" control characters, eg CTRL-G

NG/ # this is one way
NOO7/ # this is another -- CTRL-G is octal 07
Nx07/ # here it is as a hex code

\: Read about all of these and more in perldoc perlre .

Working with multi-line strings

Often, you will want to read a file several lines at a time. Goais for example, a typical Unix
fortune cookie file, which is used to generate quotes fofdhtene command:

%
Let's call it an accidental feature.
- Larry Wall
%
Linux: the choice of a GNU generation
%
When you say "I wrote a program that crashed Windows", people just stare at
you blankly and say "Hey, | got those with the system, *for fre ex".
-- Linus Torvalds
%

I don’'t know why, but first C programs tend to look a lot worse t han
first programs in any other language (maybe except for fortr an, but then
| suspect all fortran programs look like ‘firsts’)
-- Olaf Kirch
%
All language designers are arrogant. Goes with the territor Yoo
- Larry Wall
%
We all know Linux is great... it does infinite loops in 5 secon ds.

-- Linus Torvalds
%

Some people have told me they don't think a fat penguin really embodies the
grace of Linux, which just tells me they have never seen a angr y penguin
charging at them in excess of 100mph. They'd be a lot more care ful

about what they say if they had.
-- Linus Torvalds, announcing Linux v2.0
%

The fortune cookies are separated by a line which contaitisngpbut a percent sign.

Perl Training Australia (http://www.perltraining.com/x 43

Chapter 7. Advanced regular expressions

To read this file one item at a time, we would need to set thedkeli to something other than the
usuahn - in this case, we'd need to set it to something like\n .

To do this in Perl, we use the special variable This is called the input record separator.
$/ = "\n%\n";

Conveniently enough, settirgg to ™ will cause input to occur in "paragraph mode", in which two
or more consecutive newlines will be treated as the delimtitedefinings/ will cause the entire file
to be slurped in.

undef $/;
$ = <> # whole file now here

Changing $/ doesn’t just change how readline (<>) works. It also affects the chomp function,
which always removes the value of $/ from the end of its argument. The reason we normally
think of chomp removing newlines is that $/ is set to newline by default.

“It's usually a very good idea to use local when changing special variables. For example, we
could write:

{
local $/ = "\n%\n";
$ = <>; # first fortune cookie is in $_ now

}

to grab the first fortune cookie. By enclosing the code in a block and using local, we restrict the
change of $/ to that block. After the block $/ is whatever it was before the block (without us
having to save it and remember to change it back). This localisation occurs regardless of how
you exit the block, and so is particularly useful if you need to alter a special variable for a
complex section of code.

Variables changed with local are also changed for any functions or subroutines you might call
while the local is in effect. Unless it was your intention to change a special variable for one or
more of the subroutines you call, you should end your block before calling them.

It is a compile-time error to try and declare a special variable using my.

\: . Special variables are covered in Chapter 28 of the Camel book, (pages 127
onwards, 2nd Ed). The information can also be found in perldoc perlvar .

Sinces/ isn’'t the easiest name to remember, we can use a longer naosgirmytheEnglish module:

use English;
$INPUT_RECORD_SEPARATOR = "\n%\n"; # long name for $/
$RS = "\n%\n"; # same thing, awk-like

44 Perl Training Australia (http://www.perltraining.com/x

Chapter 7. Advanced regular expressions

\: . The English module is documented on page 884 (page 403, 2nd Ed) of the Camel
book or in perldoc English . You can find out about all of Perl’s special variables’ English names
by reading perldoc perlvar .

Exercise

1. In your directory is a file calleekercises/linux.txt which is a set of Linux-related fortunes,
formatted as in the above example. This file contains a graaymuotes, including the ones in
the example above and many many more. Use multi-line regufaressions to find only those
guotes which were uttered by Larry Wall. You might also wantdfresh your memory of
chomp() at this point. (Answerexercises/answers/larry.pl)

Regexp modifiers for multi-line data

Perl has two modifiers for multi-line data. and/m. These can be used to treat the string you're
matching against as either a single line or as multiple limgir presence changes the behaviour of
caret (), dollar) and dot ().

By default caret matches the start of the string. Dollar imesdhe end of the string (regardless of
newlines). Dot matches anything but a newline character.

With the/s modifier, caret and dollar behave the same as in the defaé{ bat dot will match the
newline character.

With the/m modifier, caret matches the start of any line within the gtraollar matches the end of
any line within the string. Dot does not match the newlinerabter.

my $string = "This is some text
and some more text
spanning several lines";

if ($string =~ /~and some/m) { # this will match
print "Matched in multi-line mode\n"; # because " matches th e
} # start of any line

in the string

if ($string =~ /~and somels) { # this won't match
print "Matched in single line mode\n"; # because ~ only match es
} # the start of the string.
if($string =~ /AThis is some/s) { # this will match
print "Matched in single line mode\n"; # (and would have with out
} # the /s, or with /m)
if($string =~ /(some.*text)/s) { # Prints "some text\nand s ome more text"
print "$1\n"; # Note that . is matching \n here
}
if($string =~ /(some.*text)/m) { # Prints "some text"
print "$1\n"; # Note that . does not match \n
}

The differences between default, single line, and muli-lnode are set out very succinctly by
Jeffrey Friedl in Mastering Regular Expressions (see théhEuReading at the back of these notes
for details). The following table is paraphrased from the on page 236 of that book.

Perl Training Australia (http://www.perltraining.com/x 45

Chapter 7. Advanced regular expressions

His term "clean multi-line mode" describes one in which eafth, $ and. all do what many

programmers expect them to do. That iwill match newlines as well as all other characters, and

ands each work on start and end of lines, rather than the start athdfthe string.

Table 7-2. Effects of single and multi-line options

Mode Specified with matches... $ matches... Dot matches
newline

default neither/s nor/m [start of string end of string No

single-line /s start of string end of string Yes

multi-line /m start of line end of line No

clean multi-line |both/m and/s start of line end of line Yes

Modifiers may be clumped at the end of a regular expressiopefimrm a search using “clean
multi-line” irrespective of case your expression mightkdie this

/"he start.*end$/msi

and if we had the following strings

$stringl = "the start of the day
is the end of the night";

$string2 = "10 athletes waited,
the starting point was ready
how it would end

was anyone’s guess";

$string3 = uc($string2); # same as string 2 but all in upperca se

we’d expect the match to succeed with bgthing2 andsstring3 but not withsstringl

Back references

Special variables

There are several special variables related to regulaessfums. The parenthesised names beside
them are their long names if you use the English module.

+ $&is the matched text (MATCH)

« 3 (dollar backtick) is the unmatched text to the left of the chad text (PREMATCH)

- ¢ (dollar forwardtick) is the unmatched text to the right of tmatched text (POSTMATCH)
+ $1,$2, $3, etc. The text matched by the 1st, 2nd, 3rd, etc sets of jeses.

All these variables are modified when a match occurs, and earséd in the same way that other
scalar variables can be used.

my ($match) = m/A(\d+)/;
print $match;

or alternately...

46 Perl Training Australia (http://www.perltraining.com/x

Chapter 7. Advanced regular expressions

m/N\d+/;
print $&;

match the first three words...

m/A\w+) (\w+) (\w+)/;
print "$1 $2 $3\n";

You can also usg& and other special variables in substitutions:

$string
$string

"It was a dark and stormy night.";
~ s/dark|wet|cold/very $&/;

When Perl sees you using PREMATCH ($*), MATCH ($&), or POSTMATCH ('), it assumes that
you may want to use them again. This means that it has to prepare these variables after every
successful pattern match. This can slow a program down because these variables are
"prepared" by copying the string you matched against to an internal location.

If the use of those variables make your life much easier, then go ahead and use them. However,
if using $1, $2 etc can be used for your task instead, your program will be faster and leaner by
using them.

- If you want to use parentheses simply for grouping, and don’t want them to set a $1 style
variable, you can use a special kind of non-capturing parentheses, which look like (2: ...)

this only sets $1 - the first two sets of parentheses are non- capturing
mN(?:\w+) (?:\w+) (\w+)/;

The special variablegl and so on can be used in substitutions to include matcheahtéhe
replacement expression:

swap first and second words
sif(\w+) (\w+)/$2 $1/;

However, this is no use in a simple match pattern, becgusad friends aren’t set until after the
match is complete. Something like:

my $word = "this";
print if m/($word) $1/;

... will notmatch "this this". Rather, it will match "this" followed byhatevers1 was set to by an
earlier match.

In order to match "this this" we need to use the special regxpression meta characters\2 , etc.
These meta characters refer to parenthesised parts of b patern, just as1 does, butvithin the
same matchather than referring back to the previous match.

my $word = "this";
print if m/($word) \1/;

Perl Training Australia (http://www.perltraining.com/x a7

Chapter 7. Advanced regular expressions

Exercises

1. Write a script which swaps the first and the last words oh égre.

2. Write a script which looks for doubled terms such as "baamag) or "quack quack" and prints
out all occurrences. This script could be used for findinggraphic errors in text. (Answer:
exercises/answers/double.pl)

Advanced Exercises

1. Make your swapping-words program work with lines thattstad end with punctuation
characters. (Answeexercises/answers/firstlast.pl)

2. Modify your repeated word script to work across line boanes (Answer:
exercises/answers/multiline_double.pl)

3. What about case sensitivity with repeated words?

Chapter summary

48

- Input data can be split into multi-line strings using thea@gkevariables/ , also known as
$INPUT_RECORD_SEPARATOR

« Thess and/m modifiers can be used to treat multi-line data as if it werenglsiline or multiple
lines, respectively. This affects the matching @nds, as well as whether or notwill match a
newline.

« The special variabless, $+ and$ are always set when a successful match occurs

- $1, $2, $3 etc are set after a successful match to the text matched liyshesecond, third, etc sets
of parentheses in the regular expression. These shouldenlgedutsidethe regular expression
itself, as they will not be set until the match has been swgfaks

« Special non-capturing parentheges) can be used for grouping when you don’t wish to set
one of the numbered special variables.

- Special meta characters suchm@as\2 etc may be usedithin the regular expression itself, to refer
to text previously matched.

Perl Training Australia (http://www.perltraining.com/a

Chapter 8. File 1/0

In this chapter...

In this chapter, we learn how to open and interact with fileasdinectories in various ways.

Assumed knowledge

You should already have seen the line input operator in a previous Perl training session graar
previous Perl experience.

Angle brackets - the line input and globbing operators

You will have encountered the line input operator before, in situations such as these:

reading lines from STDIN (or from files on the command line)
while (<>) {
Process the line of input in $_

}

reading a single line of user input from STDIN
my $input = <STDIN>;

reading all lines from STDIN into an array
my @input = <STDIN>;

\: The line input operator is discussed in-depth on page 81 (page 53, 2nd Ed) of the
Camel book. You can read about the closely-related readiine function using perldoc -f readline .

- In scalar context, the line input operator yields the ne bbf the file referenced by the filehandle
given.

- Inlist context, the line input operator yields all remaigiimes of the file referenced by the
filehandle. (Be careful when using this as you may use up aif ygiemory if the file is large).

« The default filehandle iSTDIN, or any files listed on the command line of the Perl script (eg
myscript.pl filel file2 file3).

Theglobbingoperator looks the same as the line input operator, but iy ipaite different.

\: The filename globbing operator is documented on page 83 (page 55, 2nd Ed) of the
Camel book. You can also read about it with perldoc perlop .

Perl Training Australia (http://www.perltraining.com/x 49

Chapter 8. File I/0

If the angle brackets have anything in them other than a fildleeor nothing, it will work as a
globbing operator and whatever is between the angle braekktbe treated as a flename wildcard.
For instance:

my @files = <*txt >;
The filename glob.txt is matched against files in the current directory, then eitey are
returned as a list (in list context, as above) or one scalatiate (in scalar context).

Perl's globs operate the same way as they do in the UNIX G-dbeh’t worry if you don’t know
C-shell, the basic pattern matching operators (suchaasl?) have the same behaviour as just about
any other shell that you may have used.

If you get a list of files this way, you can then open them in tamnd read from them.

while (<*txt >) {
open (FILEHANDLE, " < $_") or die ("Can’'t open $_: $!");

Read from the file

close FILEHANDLE;
}

Theglob() function behaves in a very similar manner to the angle bitaglibbing operator.
my @files = glob("*.txt");
foreach (glob("*.txt")) {

Process the filename in $_

}

Theglob() is considered much cleaner and better to use than the aregtkdts globbing operator.

\: Like all functions, you can read more about glob using perldoc -f glob

Exercises

1. Use the file globbing function or operator to find all Perifgs in your current directory and
print out their names (assuming they are named in the fqirm) (Answer:
exercises/answers/findscripts.pl)

2. Use the line input operator to accept and print input froeuser on a line-by-line basis.

3. Modify your previous script to usevanile loop to get user input repeatedly, until they type "Q"
(or"g" - check out thec() anduc() functions by usingeridoc -f uc andperldoc -f Ic)
(Answer:exercises/answers/userinput.pl)

Advanced exercises

1. Use the above example of globbing to print out all the Reipss one after the other. You will
need to use thepen() function to read from each file in turn. (Answer:
exercises/answers/printscripts.pl)

50 Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I1/10

open() and friends - the gory details

Opening a file for reading, writing or appending

\: . The open() function is documented on pages 747-755 (pages 191-195, 2nd Ed) of
the Camel book, and also in perldoc -f open .

Theopen() function is used to open a file for reading or writing (or bathas a pipe - more on that
later).

In brief, Perl uses the same characters as shell does fopgieations. That is:

+ < says to open the file for reading
+ > says to open the file for writing
« >> says to open the file for appending.

In a typical situation, we might usgen() to open and read from a file:

open(LOGFILE, " < /var/log/httpd/access.log");

Note that the< (less than) character used to indicate reading is assungecowd equally well have
said

open (LOGFILE, "/var/log/httpd/access.log");

Although reading mode is assumed when opening files, it is still always a good idea to explicitly
open your files for reading by using the < character. Doing so protects you from the case where
your filename has odd characters in it, such as <, > and | which all mean special things to open.

Watch out when using > to open files for writing. Like shell, using > will clobber any contents of
your file. This is because > truncates the file when it is opened. So even if you don’t write
anything to the file, the original contents will be lost upon opening.

Using > or >> will cause the files to spring into existence if they do not already exist, so you
don’t have to worry about how to create them before writing.

- If you need more control over how you open your files, check out the sysopen function by using
perldoc -f sysopen . Using sysopen is especially important if you're running with elevated
privileges, as it can help protect against dangerous race conditions. You can read more about
that on pages 571-573 in the Camel book (3rd Ed only).

Perl Training Australia (http://www.perltraining.com/x 51

Chapter 8. File I/0

You shouldalwayscheck for failure of arpen() statement:

open(LOGFILE, " < /var/log/httpd/access.log")
or die "Can't open /var/log/httpd/access.log: $!";

die is a Perl function which takes an error message and ternsittageprogram displaying that
message to the user. In this example, the die statementh{vghadways true) is executed only if the
open statement does not return true, that is, if there wasranie opening the file.

Attempting to read from an unopened file may cause unexpeeseits.

\: $! is the special variable which contains the error message produced by the last
system interaction. It is documented in on page 669 (page 134, 2nd Ed) of the Camel book and
also in perldoc perlvar

Perl tries to be helpful when dying on errors and will append the appropriate flename and line
number of your script to the end of the die message, with a newline. If you don’t want this
behaviour, end the die message with a newline (\n) character. For example:

The following provides an error with file and line-number:
open(LOGFILE, "< $file") or die "Cannot open $file: $!";

Here the file and line-number are omitted.
open(LOGFILE, "< $file") or die "Cannot open $file: $I\n";

Make sure you don’t do this by accident, and miss out on this important information.

Once a file is opened for reading or writing, we can use thedilele we specified (in this case
LOGFILE) for a variety of useful purposes:

open(LOGFILE, " < /var/log/httpd/access.log”) or die "Can’t open
Ivar/log/httpd/access.log: $!";

use the filehandle in the in the <> line input operator...
while (<LOGFILE>) {

print if /perltraining.com.au/;

}
close LOGFILE;

open a new logfile for appending
open(SCRIPTLOG, " >> myscript.log”) or die "Can’t open myscript.log: $!*;

print() takes an optional filehandle argument - defaults t o STDOUT
print SCRIPTLOG "Opened logfile successfully.\n";

close SCRIPTLOG;

Note that you should always close a filehandle when you'rstiigd with it (even though any open
filehandles will be automatically closed when your scrigt®x

52 Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I/0

Under Perl version 5.6.0 and above, you can provide a scalar as the first argument to the open
function. This means that your filehandles can have scope, and makes it easier to pass them to
subroutines and put into structures such as hashes and arrays.

my $fh;
open($fh,” < /path/toffile”) or die "...";

In versions before 5.6.0 you can do the same thing by using the FileHandle module, but you
need to declare your intentions first:

use FileHandle;

my $fh = FileHandle->new; # $fh is now a FileHandle object.
open ($fth,” < /path/toffile”) or die ".."

You use scalar filehandles the same way as you use regular ones:

while(<$th >) {
do something with each line of the file

}

Using the FileHandle module also works in Perl 5.6.0 and above, so if compatibility with older
versions of Perl is important to you, you should use the FileHandle module for scalar filehandles.

For more information see perldoc FileHandle and pages 895-898 (page 442-444, 2nd Ed) in the
Camel book.

Be careful when trying to open a file whose name contains characters that might have special
meaning to open() , in particular those that end with | (pipe), or begin with > or <, as these may
result in open() not doing what you expect. Leading and trailing spaces are also ignored.

Under Perl 5.6.0 and above, a three-argument version of open() exists. This version of open()
treats the filename literally, including special characters and spaces. You use it like this:

my $filename = "filename ending with spaces

open(FILE, "<", $filename)

or die "Failed to open file: $filename for reading: $!";
while(<FILE >) {

Process the line of input in $_

}

The three argument version of open is much safer than the two-argument version, especially if
you're dealing with untrusted user input, as no special interpretation is done on the filename. It's
described with the rest of the open documentation.

\: For a safe file open for those who can't upgrade to Perl 5.6, have a look at sysopen .
Information about sysopen can be found in perldoc -f sysopen and pages 808-810 (pages 194,
2nd Ed) of the Camel book.

Perl Training Australia (http://www.perltraining.com/x 53

Chapter 8. File I/0

Exercises

1. Write a script which opens a file for reading. Useh#e loop to print out each line of the file.

2. Use the above script to open a Perl script. Use a regulaessipn to print out only those lines
not beginning with a hash character (i.e. non-comment)iff@siswer:
exercises/answers/delcomments.pl)

3. Create a new script which opens a file for writing. Write thet numbers 1 to 100 into this file.
(Hint: the numbers 1 to 100 can be generated by using tluperator egtoreach my $value
(1.100) {4) (Answer:exercises/answers/100count.pl)

4. Create a new script which opens a logfile for appendingat€rawhile loop which accepts
input from STDIN and appends each line of input to the log{deswer:
exercises/answers/logfile.pl)

5. Create a script which opens two files, reads input from tkg find writes it out to the second.
(Answer:exercises/answers/readwrite.pl)

Reading directories

In addition to being able to open files, it's also possiblegierodirectories using theendir()
function. Once a directory is open, you can read filehandtes ft using theeaddir() function.

To read the contents of files in the directory, you still needpen each one using thgen()
function.

\: ' opendir() is documented on page 755 (page 195, 2nd Ed) of the Camel book.
readdir() IS on page 770 (page 202, 2nd Ed). Don't forget that function help is also available by
typing perldoc -f opendir or perldoc -f readdir

$ENV{HOME]} stores the home directory on Unix platforms, us e
$ENV{HOMEPATH} for MS Windows
opendirf(HOMEDIR, $ENV{HOME}) or die "Can't read dir $ENV{H OME}: $!';

my @files = readdirf(HOMEDIR);
closedir HOMEDIR;
foreach (@files) {
Skip over directories and non-plain files (eg devices)

next unless -f "$ENV{HOME}/$_";

open(THISFILE, " < $ENV{HOME}/$_")
or die "Can't open file $SENV{HOME}$: $!";

Read from the file...

close THISFILE;

54 Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I1/10

o=

The HOMEDIRN the previous example is a directory handle not a filehandle, even though they
look the same. Attempting to use a directory handle as a filehandle (or the opposite) will result in
an error.

Under Perl 5.6.1 and above you can provide a scalar as the argument to readdir . This allows
you to have scalar directory handles which have scope and makes it easier for you to pass them
to subroutines or include them in hashes and arrays.

my $homedir;
opendir($homedir, $ENV{HOMEY}) or die "Can't read dir $ENV{ HOME}: $!";
my @files = readdir($homedir);

glob and readdir

There are some major differences betwgien() andreaddir() . glob() is not as fast but gives
you flexibility over which filenames you get baakob(**.c*) for example, returns only files with
the ".c" extensionglob() also gives you back filenames in asciibetical order, whetaasir gives
you back the files in whatever order they're stored in therirdkrepresentation of your system.

glob("some/path/*") will return filenames with path intact whereas readdir weliurn only the
filenames of the files in the directory.

The last difference between these is their behaviour withiles. For example.bashrc”
glob(™" will not return these files (althougob(".*") will), whereaseaddir() ~ will always

return " " files.

Table 8-1. Differences between glob and readdir

glob readdir

Slower Faster

Allows you to filter filenames Gives you all filenames

Returns files in asciibetical order Returns files in file-system order
Returns filename with path intact Returns filename only

Does not return dot files when called as Returns all filenames

glob("™*")

rewinddir

We can rewind the current position of the directory handiektia the beginning by using the
rewinddir ~ function.

opendir(HOMEDIR, $ENV{HOME}) or die "Can't read dir $SENV{H OME}: $!";

foreach my $file (readdir(HOMEDIR)) {
next unless -f "SENV{HOME}/$_";
open(THISFILE, " < $ENV{HOME}/$_")
or die "Can't open file $SENV{HOME}S$: $!");
Read from the file...

Perl Training Australia (http://www.perltraining.com/x 55

Chapter 8. File I/0

56

rewinddir HOMEDIR,;
Now we can read through our directory contents again...
if we wish to.

L
" rewinddir does not refresh the directory listing when it rewinds. To see whether the directory

listing has changed since your program started you’ll have to close the directory and reopen it.

\: . You can find more about rewinddir by reading perldoc -f rewinddir or page 777
(page 208, 2nd Ed) in the Camel book.

Changing directories

The functionchdir - allows you to change your program’s working directory. Alative file access
from that point on will use the new directory. Note that thidnot change the working directory of
the calling process.

Archive log files
my $tar = “/bin/tar";
my $date = "01-01-00";
my $directory = "/var/log/apache/";

unless(chdir($directory)) {
die "Failed to chdir to $directory: $!";
}

Get all files in this directory
my @files = glob("*.log*");
system("$tar -czf weblogs.$date.tgz @files") if @files;

We learn how to check that system worked later in the course.

\: . You can find more about chdir by reading perldoc -f chdir or page 688 (page 148,
2nd Ed) in the Camel book.

Exercises
1. Useopendir() andreaddir() to obtain a list of files in a directory. What order are they in?

2. Use thesort() function to sort the list of files asciibetically (Answer:
exercises/answers/dirlist.pl)

Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I/0

Changing file contents

When manipulating files, we may wish to change their contéafexible way of reading and
writing a file is to import the file into an array, manipulate thrray, then output each element again.

It is important to ensure that should anything go wrong we'tdose our original data. As a result,
it's consideredest-practicdo write our data out to a temporary file and them move that theer
input file after everything has been successful.

a program that reads in a file and writes the lines in sorted o rder.
use File::Copy;

open(INFILE, " < file.txt") or die "Can't open file.txt for input: $!";
my @lines = <INFILE >; # Slurps all the lines into @lines.
close INFILE;

@lines = sort @lines;

open temporary file to save our sorted data into
open(OUTFILE, " >file.txt.tmp") or die "Can't open file.txt for output: $!";
foreach my $line (@lines) {

print OUTFILE $line;

}
close OUTFILE;

at this point we know that we were successful, so write over t he original
file
move(“file.txt.tmp", "file.txt");

In fact, since the print function can take a list of valuestiotpinstead of theoreach loop above,
we could have written:

print OUTFILE @lines;

\: . The Filez:Copy module makes copying and moving files very easy. To find out more
about File:copy read perldoc File::Copy .

One thing to watch out for here is memory usage. If you have a ten megabyte file and you read
it into an array, it will use at least that much memory as a Perl data structure.

Note that this includes doing things such as:

foreach (<FILE >) {
Process the line of input in $_

}

as this will read the whole file into the list given to foreach and then walk over it line by line.

Of course, if you don’t need to manipulate all of the linesetgr (eg sorting) you ought to forgo the
reading things into an array and just loop over each line ti@oa to ensure, however, that your
original data cannot be lost if the program terminates uaetqully.

removes duplicated lines

open(INFILE, " <file.txt") or die "Can't open file.txt for input: $!";
open(OUTFILE, " >outfile.txt") or die "Can't open ouffile.txt for output: $! B

Perl Training Australia (http://www.perltraining.com/x 57

Chapter 8. File I/0

58

my $lastline;

while(<INFILE >) {
print OUTFILE $_ unless ($_ eq $lastline);
$lastline = $_;

}

close INFILE;
close OUTFILE;

Exercises

1. Open afile, reverse its contents (line by line) and writeitk to the same filename. For
example, "this is a line" would be written as "enil a si silkhgwer:
exercises/answers/reversefile.pl)

Opening files for simultaneous read/write

Files can be opened for simultaneous read/write by puttingndront of the> or < sign.+< is
almost always preferable, as would overwrite the file before you had a chance to read from it

Read/write access to a file is not as useful as it sounds -epgxmder special circumstances
(notably when dealing with fixed-length records) you casifully write into the middle of the file
using this method, only onto the end. The main use for redidaccess is to read the contents of a
file and then append lines to the end of it.

T
A puts you at the start of the file. Note that it won't create a new file if the file you're dealing

with does not exist (you'll just get an error that the file doesn’t exist). If you start writing before
you've reached the end of the file, you will overwrite characters in that file (from that point). Even
if you're dealing with fixed-length records and think you know what you're doing, this is often still
a bad idea. See below.

+>> initially puts you at the end of the file. It will create a new file if necessary and will not
clobber an old one. It allows you to read at any point in the file, but all writes will always go to the
end.

Since both print and readline (<>) are buffered, you should not use them for editing a file
in-place. If you must do so, use the lower level functions such as sysseek() , syswrite() and
sysread() . Perlalso has a-i switch, for more useful in-place modification of files. These
concepts are not covered in this course.

\: For more information about open including simultaneous read/write, see perldoc
perlopentut . Also read pages 747-755 (pages 191-195, 2nd Ed) of the Camel book.

For information about the -i option to Perl read perldoc perlrun and pages 495-497 (page 332,
2nd Ed) of the Camel book.

For information about Perl’s buffering and where it can cause problems read Mark Jason
Dominus’s excellent article on Suffering from Buffering available from his Perl FAQs
(http://perl.plover.com/FAQs/Buffering.html).

Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I/0

Example: Reading a file and adding to the end.
Program that checks to see if $username appears in the file
adds $username to the end, if not.

my $username = <STDIN>;
chomp $username;

open(FILE, "+< file.txt") or die "Failed to open file.txt fo r read/write: $!";

my $found;
while(<FILE >) {
chomp;
case insensitive matching
$found = 1 && last if(lc($_) eq Ic($username));
}

We'll be at the end of our file if $found isn't set
unless($found) {
print FILE "$username\n";

}
close FILE;

Opening pipes

If the filename given tepen() begins with a pipe symbo] |, the filename is interpreted as a
command to which output is to be piped, and if the filename &vitlsa | , the filename is to be
interpreted as a filename which pipes input to us.

We can use pipes to read information from any process we eugxon our system. Once the
command is open, we can read from the resulting filehandle€iisame way we would read from
any other file. In the example below, we use secure skel) (o read a file on a remote machine.

#l/usr/bin/perl -w
This program allows us to read a file from another machine

using secure shell. This is most useful if we can login witho ut
a password (eg, established keys).

use strict;

Process our command line arguments, and complain if we don’ t

have both a host and filename.
my ($host, $file) = @ARGV;
unless ($host and $file) {
die "Usage: $0 host filename\n";

}
open (SSH, "ssh $host cat $file |") or die "Can’t open pipe: $! "

while(<SSH>) {
We can process the file in any way we like here.
In this particular case, we’ll simply print it to
our STDOUT.

print;
}

Here’s an example which writes to teert command, which is a standard utility on both Windows
and Unix systems. Even though Perl has its @ert function, the external command is very good at
dealing with large amounts of data in a memory-efficient nesinn

Perl Training Australia (http://www.perltraining.com/x 59

Chapter 8. File I/0

#l/usr/bin/perl -w
use strict;

Open our external sort command.
open (SORT, "|sort") or die "Can't open pipe: $!";

Our friends will be printed in sorted order.

foreach my $friend (gw/Jacinta Damian Kirrily Paul/) {

print SORT "$friend\n";

}
close SORT;

!

“If you're interested in reading more about inter-process communication, including pipes,

signals, sockets and the like, check out perldoc perlipc .

Exercises

1. Modify the second example above (provided for yoes@g:ises/sort_starter.pl
exercises directory) to accept user input and print oustireed version.

2. Change your script to accept input from a file usipgn() (Answer:

exercises/answers/sort.pl

3. If you are using a unix system: change your script to pp@jput through thetrings command
and thersort. Now if you specify a file that is not a text file, it will only soand display

printable strings. Try running this ovessr/bin/perl . (Answer:

exercises/answers/strings.pl

Finding information about files

We can find out various information about files by using file tggerators and functions such as

stat()

Table 8-2. File test operators

Operator

Meaning

-e

File exists.

-r

File is readable

-W

File is writable

X

File is executable

File is owned by you

File has zero size.

File has nonzero size (returns size).

File is a normal file.

File is a directory.

File is a symbolic link.

60 Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I1/10

Operator Meaning

-p File is a named pipe (FIFO), or Filehandle is a
pipe.

-S File is a socket.

b File is a block special file.

-c File is a character special file.

-t Filehandle is opened to a tty.

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

-T File is a text file.

-B File is a binary file (opposite of -T).

-M IAge of file in days when script started.

-A Same for access time.

-C Same for inode change time.

\: The file test operators are documented fully in perldoc -f -x .

Here’s how the file test operators are usually used:

#l/usr/bin/perl -w
use strict;

unless (-e "config.txt") {

}

die "Config file doesn't exist";

or equivalently...
die "Config file doesn’t exist" unless -e "config.txt";

Thestat() function returns similar information for a single file, istiform.istat) ~ can also be
used for finding information about a file which is pointed toebgymbolic link. If you've used these
functions in C or other languages, then you'll probably findrh somewhat familiar in Perl. Check
outperldoc -f statto see the format this data is returned in and how to make use of

“ Occasionally it is desirable to perform several tests on the same file at the same time. Perhaps
you'd like to check that a file is both readable and writable. It is possible to perform your test like
this:

it (r $fle && -w $file) {
..
}

but that involves two separate tests which both take time. The file might also change between
the tests (which is why file tests are almost always a bad idea in security situations).

Perl caches the result of file tests in a special filehandle called _ (underscore). Performing tests
on this filehandle can often avoid subsequent system calls, resulting in a slight performance
gain.

Perl Training Australia (http://www.perltraining.com/x 61

Chapter 8. File I/0

if(r $file && -w) {
.
}

There are some caveats on when the _ filehandle can be used with certain operators such as -I
and -t . To find out more about these and to learn more about file test operators read perldoc -f
-X.

The file test operators expect the file you're testing to be in the current working directory. If this
is not the case, make sure you prepend a path to the file before doing your test.

Exercises

1. Use the file test operators to print out only files from aaey which are "normal* files, i.e. not

directories, symbolic links or other oddities. (Answesgrcises/answers/normaldirlist.pl)
2. Write a script to find zero-byte files in a directory. (Answeercises/answers/zerobyte.pl)
3. Write a script to find the largest file in a directogyercises/answers/largestfile.pl)

4. Write a script which asks a user for a file to open, takes thput from STDIN, checks that the
file exists, then prints out the contents of that file. (Answer
exercises/answers/fileexists.pl)

Recursing down directories

62

\: . The File::Find module is documented on pages 889-890 (page 439, 2nd Ed) or
more fully in perldoc File::Find .

The built-in functions described above do not enable yowagilgrecurse through subdirectories.
Luckily, theFile::Find module is part of the standard library distributed with Perl

FilexFind emulates Unix'dind command. It takes as its arguments a subroutine to exeaute fo
each file found, and a list of directories to search. Notetthpass a reference to a subroutine we
prefix the name of the subroutine with. In our example below, this i&wanted .

#!/usr/bin/perl -w

use strict;

use File::Find;

print "Enter the directory to start searching in: "
chomp(my $dir = <STDIN>);

find takes a subroutine reference and the directory to star t working from.
find (\&wanted, $dir);

Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I1/10

sub wanted {
if(\.pl$/) { # See if it's a .pl file
print "$File::Find::name\n"; # Print the current file name
}
}

For each file found, certain variables are set.

« $_is setto the name of the current file.
* $File::Find::dir is set to the directory that contains the file.

« $File::Find::name contains the full name of the file, i.g&ile::Find::dir/$_

o=

FilexFind automatically changes your current working directory to the same as the file you are
currently examining. There’s rarely a need for $File::Find::dir . If all you want to do is process
the file regardless of its location on the file system you can simply open the file using the name
in $_. This behaviour can be turned off, see perldoc File::Find for further information.

Exercises

1. Modify the simple script above (in your scripts directasexercises/find.pl) to print out the
names of plain text files only (hint: use file test operators)

2. Now use it to print out the contents of each text file. Yopiibbably want to pipe your output
throughlessso that you can see it all. (Answeiercises/answers/find.pl)

File locking

File locking can be achieved using tleek() function. This can be used to guard against race
conditions or other problems which occur when two (or moregpsses want to access the same file
at the same time.

\: . flock() is documented on page 714 (page 166, 2nd Ed) of the Camel book, or use
perldoc -f flock to read the online documentation.

flock is Perl's portable file-locking mechanism, and works on noep&rating systems (and produces
a fatal error on those which it does not). The locks setday are advisory only, which means that
a process that chooses not to ag& can (and will) ignore any locks in placck can only lock
entire files, not individual records. Depending upon yotmggiock may or may not work over

NFS.

using flock

use Fcntl :flock’; # import LOCK_* constants
flock(FILEHANDLE, LOCK_EX); # exclusive (write) access
flock(FILEHANDLE, LOCK_SH); # shared (read-only) access
flock(FILEHANDLE, LOCK_UN); # unlock

Perl Training Australia (http://www.perltraining.com/x 63

Chapter 8. File I/0

Asflock only works onfilehandlesinstead of filenames, you have to open the file befbreyou
try to lock it. It's important to make sure that you open the fibr writing, if you intend to write to it,
and that you don't clobber the contents of the file when domdis is a good use 6. Closing a
locked file releases any locks the process holds upon it.i§lgisod because it means that if your
process exits unexpectedly all locks it held are releasdd#rer processes may then go forward
with their locks.

In the following example, we're locking a file before re-vimg it. The exclusive lock stops any other
process from holding a lock on the file while we perform ourragiens.

use Fcntl ":flock’; # import LOCK_* constants

Open file for read and write
open FILE, "+< $file" or die "Failed to open $file: $!";

Lock the file for writing (exclusive lock) make sure it work ed.
flock(FILE, LOCK_EX) or die "Failed to gain lock on $file: $!

At this point we have exclusive access to the file.
Wipe previous process’s details out
truncate(FILE, 0) or die "Failed to truncate $file: $!";

Write to the file, or perform other operations as needed her e..
print FILE $data;

close FILE; # Closing the file releases the lock as well.

flock will wait indefinitely until the lock is granted, however ian return early if interrupted by a
signal or other event. It's important to ensure that flockmestrue to be sure that you have the lock
you requested. It is possible to makek non-blockingas follows:

use Fcntl :flock’; # import LOCK_* constants
flock(FILEHANDLE, LOCK_EX | LOCK_NB); # non-blocking excl usive lock
flock(FILEHANDLE, LOCK_SH | LOCK_NB); # non-blocking shar ed lock

All attempts to get amon-blockingock return immediately with eithdrue for success (the lock was
obtained) offalsefor failure (the lock was not obtained).

\: For an excellent introduction on using flock , the slides from Mark Jason Dominus’
File Locking Tricks and Traps make excellent reading. They can be found at
http://perl.plover.com/yak/flock/.

Handling binary data

64

If you are opening a file which contains binary data, you pbdpdon’t want to read it in a line at a
time usingwhile (<>) { } , as there’s no guarantee that there will be any line brealtsilata,
and we’ll probably end up with very uneven chunks.

Instead, we can usead() to read a certain number of bytes from a file handle. Howewfark we
do that, we should call thegnmode() function on the filehandle, so that Perl knows that we’'ll be
dealing with a binary file. This means Perl won't try to do argansformations of input based upon
the operating system or locale where your program is running

Perl Training Australia (http://www.perltraining.com/x

Chapter 8. File I1/10

binmode() must be called on the filehandle before any corresponding@ldt’s best to call it
immediately after you open the file.

\5 ' You can learn more about read() by reading page 768 (page 202, 2nd Ed) of the
Camel book or perldoc -f read .

You can learn more about binmode() by reading page 685 (page 147, 2nd Ed) of the Camel
book, or perldoc -f binmode .

read() takes the following arguments:

« The filehandle to read from
« The scalar to put the binary data into
« The number of bytes to read

« The byte offset to start from (defaults to 0)

#!/usr/bin/perl -w
use strict;

my $image = "picture.qgif";

open (IMAGE, " < $image") or die "Can’t open image file: $!";
open (OUT, " >backup/$image") or die "Can’t open backup file: $!";

binmode IMAGE;
binmode OUT;

my $buffer;

while (read IMAGE, $buffer, 1024) {
print OUT $buffer;
}

close IMAGE;
close OUT;

Of course, in that particular instance we might have prefeto just copy the file.

Chapter summary

« Angle bracketsc> can be used for simple line input. In scalar context, theyrrethe next line; in
list context, all remaining lines; the default filehandlsi®IN or any files mentioned in the
command line (i@ARGN

« Angle brackets can also be used as a globbing operator ifisgytther than a filehandle name
appears between the angle brackets. In scalar contextisaghe next file matching the glob
pattern; in list context, returns all remaining matchingdil

« Theopen() andclose() functions can be used to open and close files. Files can bedfen
reading, writing, appending, read/write, or as pipes.

Perl Training Australia (http://www.perltraining.com/x 65

Chapter 8. File I/0

66

Theopendir() ,readdir) andclosedir) functions can be used to open, read from, and close
directories.

TheFile::Find module can be used to recurse down through directories.
File test operators attat() can be used to find information about files
File locking can be achieved usifigek()

Binary data can be read using tleed() function. Thebinmode() function should be used to
ensure platform independence when reading binary data.

Perl Training Australia (http://www.perltraining.com/x

Chapter 9. System interaction

In this chapter...

In this chapter, we look at different ways to interact witk tiperating system. In particular, we
examine theystem() function, and the backtick command execution operator. M laok at
security and platform-independence issues related togb®ithese commands in Perl.

system() and exec()

Thesystem() andexec() functions both execute system commands.

system() forks, executes the commands given in its arguments, waithém to return, then allows
your Perl script to continuexec() does not fork, and exits when it's dorsgstem() is by far the
more commonly used.

% perl -we ’'system("/bin/true"); print "Foo\n";
Foo

% perl -we ’exec("/bin/true"); print "Foo\n";
Statement unlikely to be reached at -e line 1.
(Maybe you meant system() when you said exec()?)

If the command specified byystem() could not be run the error message will be available via the
special variable! . This value is not set if the command can be run but fails dunimtime. The
return status of the command can be found in the specialblasia, which is also the return value
of system() . This value is a 16-bit status word which needs to be unpattkbd useful, as
demonstrated in the example below.

system("/bin/true");
if ($?) { # A non-zero exit code means failure
-1 means the program didn't even start!

if($? == -1) {
print "Failed to run program: $\n";
} else {
print "The exit value was: " . ($? >> 8) . "\n";

print "The signal number that terminated the program was: "
. ($? & 127) . "\n";
print "The program dumped core.\n" if $? & 128;

Just likeopen the traditional form of callingystem andexec have security issues due to shell
expansion. For example consider the following code:

my $filename;
print "Please give me a file you want to see: ";
$filename = <>; # lets pretend: $filename="fred; rm -rf /home/pjf;"
chomp($filename);
system(“cat $filename");
or
exec("cat $filename");

67
Perl Training Australia (http://www.perltraining.coni/a

Chapter 9. System interaction

In this case, due to shell expansion, the shell will recdieecommands:

cat fred
rm -rf /home/pjf

and if our program had sufficient permissions to delete pidse directory, it would.

As a result, there is another, safer, formsgfiem andexec that bypasses the shell. If you give
system Orexec a listit assumes that the first element is the command to éxeand every other
element is an argument to that command. These argumentetgrassed to the shell, and so shell
expansion will not occur. So:

system(“cat”, "*.txt");
or
exec("cat", "*.txt");

will give the'+ixt* filename tocat rather than all files with axt ~ extension. This is essential in
cases like the above where the command may be passed in freen.druthis case, if the file "*.txt"
does not exist then we’ll receive an non-zero return codecHails and returns false only if the
command (in this caseat) does not exist. If the file does not exist, the user will reeeat’s error
message.

*nix Exercise

1. Write a script to ask the user for a username on the system perform thdinger command to
see information about that user. (Answetrcises/answers/finger.pl)

MS Windows Exercise

1. Write a script to ask the user for a filename on the systeran@pe nominated file in Notepad
usingsystem (Answer:exercises/answers/notepad.pl)

Using backticks

68

Single quotes can be used to specify a literal string whichbeaprinted, assigned to a variable, et
cetera. Double quotes perform interpolation of variabfes@ertain escape sequences such as
create a string which can also be printed, assigned, etc.

A new set of quotes, calldohckticks can be used to interpolate variables then run the resultant
string as a shell command. The output of that command cana@ninted, assigned, and so forth.

Backticks are the backwards-apostrophe characjervtfich appears below the tilde)(next to the
numberi on most keyboards.

Just as thg() andqq() functions can be used to emulate single and double quotessaed/ou
from having to escape quotes that appear within a stringgdqiuévalent functiorx() can be used to
emulate backticks.

Perl Training Australia (http://www.perltraining.com/a

Chapter 9. System interaction

o=

In this course we tend to use gx() because it's much harder to confuse gx() with plain old
single quotes. Using qx() also avoids the problem that in some font sets both single quotes and
backticks look exactly the same.

Backticks are different to thgstem() command, in that they capture the output of the command
they execute, as opposed to passing it through to the user.

When called in a scalar context backticks return the outptiteocommand they execute as a string
with possibly embedded newlines. When called in a list canthe output is returned as a list with
each separate line of output being a new list element.

#!/usr/bin/perl -w
use strict;

Backticks capture the output of the process they run. Here,
we capture the output of the echo command.

my $greeting = gx(echo Hello World);

$greeting now contains the string "Hello World\n"

System runs a command without capturing the output, instea d it's

passed straight through. The following line uses the echo c ommand
to print a greeting.

system("echo Hello World");

The return status of commands called by using backticks eatetermined by examinirgp in the
same way as thgstem() example above.

\: . Backticks and the gx() function are discussed in the Camel book on page 80
(pages 52 and 41, 2nd Ed) or in perldoc perlop .

*nix Exercises

1. Modify your earlier finger program to use backticks ingteésystem() (Answer:
exercises/answers/backtickfinger.pl)

2. Change it to usex() instead (Answerexercises/answers/gxfinger.pl)

3. The Unix commanevhoami gives your username. Since most shells support backtiocksgcgn
typefinger ‘whoami* to finger yourself. Use shell backticks inside yau statementto do
this from within your Perl program. (Answessercises/answers/gxfinger2.pl)

MS Windows Exercises

1. Modify your earlier program to take a directory path frdre tiser. Use backticks to execute the
DIR command on that path and list out the files in that direct@mgs(ver:
exercises/answers/backtickdir.pl)

2. Change it to usex() instead.

Perl Training Australia (http://www.perltraining.com/x 69

Chapter 9. System interaction

3. Time permitting: reverse sort the directory listing cants.

Platform dependency issues

Note that the examples given above will not work consisyenti all operating systems. In particular,
the use obystem() calls or backticks with Unix-specific commands will not warkder Windows
NT, MacOS, etc. Slightly less obviously, the use of bacldiok NT can sometimes fail when the
output of a command is sent explicitly to the screen rathem tieing returned by the backtick
operation.

Security considerations

This section is not intended as a comprehensive guide to Perl security, rather it is here to show
some of the in-built security features that Perl has available. Even perldoc perlsec ~ does not give
you the whole picture, it just gives you some hints.

The ability to write secure programs is one that is learnt over many years of experience. It's
always a good idea to have someone well rehearsed in security and your programming
environment to audit your code in case you have missed anything. As well as training, Perl
Training Australia also offers security and privacy auditing services.

Perl Training Australia offers a course in Perl Security that covers many common attacks and
mistakes, and how they can be prevented in Perl.

Many of the examples given above can result in major sectisikg if the commands executed are
based on user input. Consider the example of a simple finggrgm which asked the user who they
wanted to finger:

#!/usr/bin/perl -w
use strict;
print "Who do you want to finger? "

my $username = <STDIN>;
print gx(finger $username);

Imagine if the user’s input had beej cat /etc/passwd , Or worse yetpjf; rm -rf / . The
system would perform both commands as though they had beeredrnto the shell one after the
other.

A further, not so obvious problem, can be seen when we ask¢hhger program are we
calling?". If our program caller has changed 6BKV{PATH} then it is very possible that it's not the
usual systenfinger found in/usrbin/ . It could instead be a maliciotdisger program designed
to exploit our program'’s privileges.

Luckily, Perl's-T flag can be used to check for unsafe user inputs.

#/usr/bin/perl -wT

70 Perl Training Australia (http://www.perltraining.com/x

Chapter 9. System interaction

\: . Documentation for taint checking can be found by reading the perldoc perlsec , or
on pages 557-568 (page 356, 2nd Ed) of the Camel book.

-T stands for "taint checking". Data input by the user is coms®d "tainted" and until it has been
modified by the script, may not be used to perform shell contdaan system interactions of any
kind. This includes system interactions suchv@s\() , chmod() , and any other built-in Perl function
which interacts with the operating system.

In versions of Perl prior to 5.8.0 files opened for both reading and writing using "+<" were not
checked for tainted filenames.

Taint checking will not occur on filenames where the file is only being opened for reading. This
is due to historical reasons. Good programming practice would have you untaint these filenames

anyway.

The only thing that will clear tainting is referencing suirggs from a regexp match. Here’s an
example.

#l/usr/bin/perl -Tw
use strict;

$ENV{PATH} = "/bin:/usr/bin"; # Taint requires we set our pa th.
print "Who do you want to finger?\n";

my $username = <STDIN>;

chomp($username);

Check $username to make sure it's clean, then finger.

if ($username =~ /M(\W{1,8)%/) {

$1 is the contents of the first set of
parentheses in the regexp.

print gx(finger $1);

} else {
print "That was not a valid usernamel\n";

}

Make sure you remember to check that the regular expression to untaint your variable
succeeded. In the case above we only have one regular expression, so $1 will either be set by
the match or will be undefined. Nevertheless we still explicitly tested the match for success. This
means that our code won't break if we add any regular expressions before the code used above.

Perl Training Australia (http://www.perltraining.com/x 71

Chapter 9. System interaction

72

You can also untaint data by capturing the match in a listexdant

Check $username to make sure it's clean
my ($safeuser) = ($username =~ /A(\Ww{1,8})$/);

safeuser is now either undefined if the match failed or
the value of $1 if the match succeeded.
if ($safeuser) {
print gx(finger $safeuser);
} else {
print "That was not a valid usernamel\n";

}

Note that you'll have to explicitly set the environmerrsTHvariable (found infBENV{PATH}) to
something safe (likausr/bin) as well. This variable affects where the shell looks foreoth
executable programsnger is found injusrbin On our system.

We have to set a safe value fBENV{PATH} because this value can be changed by the user in their
environment before running the Perl script. If the user gets PATHtO /home/pjfibin then we'd
run the/homelpijtibin/finger command rather than thesr/bin/finger command.

For safety’s sake, taint checking in Perl always assumeaghtbaaTHenvironment variable has been
tampered with by the user.

If you've been calling your Perl program from the command line with perl program pl you'll be
told that you're turning taint checking on too late, even if you've put it in your shebang line.

This is because Perl wants to know that you want to use taint checking as soon as possible. The
way to fix this is to include the -1 option in your call, so: perl -T program pl .

!

-—" SETUID scripts automatically run with taint checking turned on for your own protection.

!

-—"Under Perl 5.8.0 and above, there is also the -t switch, which causes tainted operations to
generate warnings instead of errors. This is no substitute for real taint checking, but can be
useful if you're trying to lock down legacy code and see which areas require attention.

Safe.pm

For greater security when using unknown (and possibly l)stbde, or for writing code which
adheres to strict standards about what it’s allowed to doetfs theSafemodule. This module

allows the creation of compartments in which Perl code caevbduated. These compartments allow
you to define explicitly what the code run within them may araymot do. For example, you may
deny access to the file system so that the code may not readtettovfiles. Or you may only permit
the code to use certain operators such that it may add andstibtit not divide, for example.
Attempts by the code to perform forbidden tasks result inrapitation error at compile time and a
fatal error at run time.

Perl Training Australia (http://www.perltraining.com/x

Chapter 9. System interaction

Note that it is always a good idea to audit code that you rededm a third party before executing it
on your machine.

\: Learning how to use the Safe module is a course in itself. For more information on
this module read perldoc Safe and pages 576-581 (489-493 2nd Ed) of the Camel book.

Exercise

1. Ask the user for a filename and if that file does not alreadist @xyour directory, open the file
and write a short message to it. Turn on taint checking anditiging your script. What sort of
regular expression could you use to check for valid filenantasswer:
exercises/answers/taintfile.pl)

Chapter summary

« Thesystem() function can be used to perform system commasidss set if any error occurs.

- The backtick operator can be used to perform a system comarahceturn the output. The()
quoting function/operator works similarly to backticks.

« The above methods may not result in platform independerg.cod

- Data input by users or from elsewhere on the system can caassty problems. Perl'sr flag
can be used to check for such "tainted" data

- Tainted data can only be untainted by referencing a sulgstrim a pattern match.

Perl Training Australia (http://www.perltraining.com/x 73

Chapter 9. System interaction

74 Perl Training Australia (http://www.perltraining.com/x

Chapter 10. Conclusion

What you've learnt

Now you've completed Perl Training Australia’s Intermedi®erl module, you should be confident
in your knowledge of the following fields:

- Advanced Perl data structures and references.

« Finding, using and writing function Perl modules and howge modules which have an object
oriented interface.

- How to use regular expressions to capture data, how gresshimarks and how to work with
multi-line strings.

- File I/0O, including opening files and directories, openiiyggs, finding information about files,
recursing down directories, file locking, and handling pyndata.

« System interaction, including: system calls, the backbigkrator, interacting with the file system,
dealing with users and groups, dealing with processes,atktwommunications, and security
considerations.

Where to now?

To further extend your knowledge of Perl, you may like to:

« Work through the material included in the appendices oftibisk.
- Visit the websites in our "Further Reading" section (below)

+ Follow some of the URLSs given throughout these course netgcially the ones marked
"Readme".

« Install Perl on your home or work computer.
« Practice using Perl from day to day.
- Join a Perl user group such as Perl Mongers (http://www.m@f).o
« Join an on-line Perl community such as PerlMonks (http:#aperimonks.org/).
« Extend your knowledge with further Perl Training Austrat@urses such as:
« CGI Programming with Perl
- Database Programming with Perl
. Perl Security
- Object Oriented Perl

Information about these courses can be found on Perl Tgaiirstralia’s website
(http://www.perltraining.com.au/).

Perl Training Australia (http://www.perltraining.com/x 75

Chapter 10. Conclusion

Further reading

76

Books

« Larry Wall, Tom Christiansen and Jon OrwaRtpgramming Per(3rd Ed), O’'Reilly and
Associates, 2000. ISBN 0-596-00027-8

« Tom Christiansen and Nathan Torkingtdine Perl CookbogkO’Reilly and Associates, 1998.
ISBN 1-56592-243-3.

- Jeffrey FriedlMastering Regular Expression®’Reilly and Associates, 1997. ISBN
1-56592-257-3.

« Joseph N. Hall and Randal L. Schwagfective Perl ProgrammingAddison-Wesley, 1997.
ISBN 0-20141-975-0.

Online

« The Perl homepage (http://www.perl.com/)

« The Perl Journal (http://www.tpj.com/)

« Perlmonth (http://www.perimonth.com/) (online journal)

« Perl Mongers Perl user groups (http://www.pm.org/)

« PerlMonks online community (http://www.perimonks.org/)
« comp.lang.perl.announce newsgroup

« comp.lang.perl.moderated newsgroup

« comp.lang.perl.misc newsgroup

« Comprehensive Perl Archive Network (http://www.cpan)org

Perl Training Australia (http://www.perltraining.com/x

Appendix A. Complex data structures

References are most often used to create complex dataustrsicbince references are scalars, they
can be used as values in both hashes and arrays. This makssiltlp to create both deep and
complex multi-dimensional data structures. We’ll covengsoof these in further detail in this chapter.

\: Complex data structures are covered in detail in chapter 9 (chapter 4, 2nd Ed) of
the Camel book.

Arrays of arrays

The simplest kind of nested data structure is the two-dino@asarray or matrix. It's easy to
understand, use and expand.

Creating and accessing a two-dimensional array
To create a two dimensional array, use anonymous arrayerefes:
my @AO0A = (

[gw(apple orange pear banana)],

[gw(mouse rat hamster gerbil rabbit)],

[qw(camel llama panther sheep)],

)

print $A0A[1]->[3]; # prints "gerbil"

The arrow is optional between brackets or braces so the above access could equally well have
been written:

print $A0A[1][3];

Adding to your two-dimensional array

There are several ways you can add things to your two-diragakarray. These also apply to three
and four and five and n-dimensional arrays. You can push amyamaus array into your array:

push @AO0A, [gw/lions tigers bears/];

or assign it manually:

$A0A[5] = [qw/fish chips vinegar salt pepper-pop/];

You can also add items into your arrays manually:

$A0A[O][5] = "mango";

77
Perl Training Australia (http://www.perltraining.coni/x

Appendix A. Complex data structures

or by pushing:
push @{$AoA[0]}, "grapefruit";

You're probably wondering about why we needed the curly &san our last example. This is
because we want to tell Perl that we're looking at the elerqesrtjo] and asking it to deference that
into an array. When we writ@$AoA[0] Perl interprets that a@{$AoA}[0] which assumes thaboA

is a reference to an array we're trying to take an array slici. dt's usually a good idea to use curly
braces around the element you're dereferencing to savgawefrom this confusion.

Printing out your two-dimensional array
Printing out a single element from your two-dimensionaagiis easy:

print $AcA[1][2]; # prints "hamster”

however, if you wish to print our your data structure, you’tprst do this:
print @AO0A,;

as what you'll get is something like this:

ARRAY (0x80f606C)ARRAY (0x810019c)ARRAY (0x81001f0)

which are stringified references. Instead you'll have t@tgea loop to print out your array:
foreach my $list (@A0A) {

print "@$list";
}

Hashes of arrays

Arrays of arrays have their uses, but require you to remethigerow number for each separate list.
Hashes of arrays allow you to associate information wittheigt so that you can look up each array
from a key.

Creating and accessing a hash of arrays
To create a hash of arrays create a hash whose keys are anmgmays:
my %HoA = (

fruits => [qw(apple orange pear banana)],

rodents => [gw(mouse rat hamster gerbil rabbit)],

books => [gw(camel llama panther sheep)],

):

print $HoA{rodents}[3]; # prints "gerbil"

78 Perl Training Australia (http://www.perltraining.com/x

Appendix A. Complex data structures

Adding to your hash of arrays

Adding things to your hash of arrays is easy. To add a new Bt/ gssign an anonymous array to
your hash:

$HoA{oh_my} = [gw/lions tigers bears/];

To add a single element to an array, either add it in place sh fiwon the end:

$HoA{fruits}[4] = "grapefruit";
push @{$HoA{fruits}}, "mango";

Once again you'll notice that we needed an extra set of cudgds to make it clear to Perl that we
wantedsHoA{fruits} dereferenced to an array.

Printing out your hash of arrays

Printing out a single element from your hash of arrays is easy
print $HoA{fruits}[2]; # prints "pear"

Printing out all the element once again requires a loop:
foreach my $key (keys %HoA) {

print "$key => @{$HoA{$key}}\n";
}

Arrays of hashes

Arrays of hashes are particularly common when you have nuofterdered records that you wish
to process sequentially, and each record consists of Key-pairs.

Creating and accessing an array of hashes
To create an array of hashes create an array whose valuasoamgnaous hashes:
my @AoH = (

{

name => "John",
age => 31,

name => "Mary",
age => 23,

name => "Paul",
age => 27,
);

print $AoH[2){name}; # prints "Paul"

Perl Training Australia (http://www.perltraining.com/x 79

Appendix A. Complex data structures

Adding to your array of hashes

To add a new hash to your array, add it manually or push it oreite To add an element to every
hash use a loop:

$A0H[3] = { # adding a new hash manually
name => "Jacinta",
age => 26,
h
push @AoH, { # pushing a new hash on to the end
name => "Judy",
age => 47
h
$AoH[0){favourite_colour} = "blue"; # adding an element to one hash
foreach my $hashref (@AoH) { # adding an element to every hash

$hash->{language} = "Perl";
}

Printing out your array of hashes

To print a array of hashes we need two loops. One to loop owy@lement of the array and a
second to loop over the keys in the hash:

foreach my $hashref (@AoH) {
foreach $key (keys %$hashref) {
print "$key => $hashref->{$key}\n";
}

Hashes of hashes

Hashes of hashes are an extremely common sight in Perl pnegkéashes of hashes allow you to
have a number of records indexed by name, and for each rezoohtain sub-records. As hash
lookups are very fast, accessing data from the structuisasvery fast.

Creating and accessing a hash of hashes
To create a hash of hashes, assign anonymous hashes asstovahes:

my %HoH = (
Jacinta => {
age => 26,
favourite_colour => "blue",
sport => "swimming",
language => "Perl",

Paul => {
age => 27,
favourite_colour => "green",
sport => "cycling",
language => "Perl",

80 Perl Training Australia (http://www.perltraining.com/x

Appendix A. Complex data structures

Ralph => {
age => 7,
favourite_colour=> "yellow",
sport => "little athletics",
language => "English"
L
)
print $HoH{Ralph}{sport}; # prints "little athletics"

Adding to your hash of hashes
$HoH{Ralph}{favourite_food} = "Tomato sauce"; # adding to Ralph’s hash

$HoH({Tina} = { # adding a new person hash
age => 19,
favourite_colour => "black",
sport => "tai chi",

Printing out your hash of hashes

Once again, to print out a hash of hashes we’ll need two laopsfor each key of the primary hash
and the second for each key of the inner hash.

foreach my $person (keys %HoH) {
print "We know this about $person:\n“;
foreach $key (keys %{ $HoH{$person} }) {
print "${person}s $key is $HoH{Sperson}{$key\n";
}

print "\n";

More complex structures

Armed with an understanding of the nested data structur&g\jtest covered you should be able to
create the best data structure for what you need. Perhapsagalia hash of hashes but where some
of your values are arrays. This should pose no problemsaperyou want an array of hashes of
arrays? This too should be easy.

Perl Training Australia (http://www.perltraining.com/x 81

Appendix A. Complex data structures

82 Perl Training Australia (http://www.perltraining.com/x

Appendix B. More functions

The grep() function

Thegrep() function is used to search a list for elements which matclriaiceregexp pattern. It
takes two arguments - a pattern and a list - and returns & lise@lements which match the pattern.

\: . The grep() function is on page 730 (page 178, 2nd Ed) of your Camel book.

trivially check for valid email addresses
my @valid_email_addresses = grep /\@/, @email_addresses;

Thegrep() function temporarily assigns each element of the list tthen performs matches on it.

There are many more complicated uses for the grep functmrinBtance, instead of a pattern you
can supply an entire block which is to be used to process #mesits of the list.

my @long_words = grep { (length($_) > 8); } @words;

grep() doesn’trequire a comma between its arguments if you areasiock as the first argument,
but does require one if you're just using an expression. Hdeek at the documentation for this
function to see how this is described.

Exercises

1. Usegrep() to return a list of elements which contain numbers (Answer:
exercises/answers/grepnumber.pl)

2. Usegrep() to return a list of elements which are
a. keys to a hash (Answaedxercises/answers/grepkeys.pl)

b. readable files (Answeekercises/answers/grepfiles.pl)

The map() function

Themap() function can be used to perform an action on each member sif arld return the results
as a list.

my @lowercase = map Ic, @words;
my @doubled = map { $_ * 2 } @numbers;

map() is often a quicker way to achieve what would otherwise be dgniéerating through the list
with foreach .

foreach (@words) {
push (@lowercase, Ic($));

}

Perl Training Australia (http://www.perltraining.com/x 83

Appendix B. More functions

Like grep() , it doesn’t require a comma between its arguments if you sirga block as the first
argument, but does require one if you're just using an eswas

Exercises

1. Create an array of numbers. Ussp() to calculate the square of each number. Print out the
results.

84 Perl Training Australia (http://www.perltraining.com/x

Appendix C. Unix cheat sheet

A brief run-down for those whose Unix skills are rusty:

Table C-1. Simple Unix commands

Action Command
Change to home directory cd

Change tali rect ory cddirectory
Change to directory above current directory [cd ..

Show current directory pwd

Directory listing Is

\Wide directory listing, showing hidden files |Is -al

Showing file permissions Is -al

Making a file executable chmod +xfil ename
Printing a long file a screenful at a time morefil enane Or lessfil ename
Getting help forcomand man conmand

Perl Training Australia (http://www.perltraining.com/x

85

Appendix C. Unix cheat sheet

86 Perl Training Australia (http://www.perltraining.com/x

Colophon

mJXXLm. .mJIXXLm
IXXXXXXXXL. JXXLm. .mJIXXL IXXXXXXXXL
{XXXXXXXXXXX. IXXXMXXXXm mXXXXmXXXL XXXXXXXX XXX}
XXX XXXKXXXKL. XXXXXXXXXE - 7XXXXXXXXXE L IX XXX XKK .

TXXXXXXXXXXXXXXXXL. XXXXXX.

TXXXXXXXXXXXXXX XX XXX MXXXXXXX.

XXXXXXXKXXXKXXKXXKXKXXKXXKXXXKXXKXY
XXXXXXXKXXXXEXXXKXKXXKXXXKXKXXKXKK
IXXXXXXXXXXXXXKXXXXXXXKXXXXXXKXXE
XXATXXXXXXXXXXXXXKXXXXXXKXKXXXF
XX {XXXFXXXXXXXXXXXXXXXXKXXKF?
KHXXXTXXXEXXXXXAKXXKX

IXXX! {XXXXXXXX TXXXF

XX} {XXF XXXXFXXX}

{XX XXL 7TXX} 7XX}
XX XXL mXXF {XX
XX TXXXF XX
XX. JXXXX. 7X.
{XXL TXF7TXXX. {XX
XXX XXXm
VAVAVAVAVAN
.mJIXXLm
.MJIXXL JIXXXXXXXXL
MXXXXmXXXL XXXXXXXXX XX}
TXXKXXXXXXG L IXXXXXXXXXX XXX

D,9,9,9,9,0.40),9,9,9,9,9,9,9,9,9,0,0,0,0,0, 0. (X
9,9,9,9,9,9.9,(11),9,9,90,0,0,9,9,9,90,9,9,9,0,9,0,0,0,0.{ R

10,0,9,9.9.0.9.0,0.9.9.0.9.9.0.9.0,.0.9.9.9.9.0.9.9.9.0.0.0.8
XXXXXXXXXXXXXX XX KKK XX XKXXXXXX.

XXXXXXIXXKXXXXKXKXXXXKXL
XXXXXXXMXXXX XX XX KKK XL
LXXXXXX XX XK XXX XX KRR XX KX KX
XXXXXXXKX XK XXX XK KRREREI XXX KX.
TXXXXXXX XX XX XXX SHEGE XXX XKL
TXXXXXXXX XXX XXX X KIS FAXX
TXXXXKXKXXKXXXXKXXXXXXEK XX
?OXXXXXAXXXXXTXXKEXXXEX
TXXXF XXXXXXXX} XXX
{XXXEXXXXY 7XXE {XX.

{XXF {XXF' JXX XX}
XX} 7XXm JXX XX
XX’ TXXXF XX
XF XXXXL XX
XX} XXXF7XF JIXX}
mXXX’ XXX
FAVAVAVAVAN
mJXXLm.
JXXXXXXXXL. JXXLm.
{XXXXXXXXXXX. JXXXMXXXXm
XOXOXXXXXXXXXXXL, XXX XX XX F

TXXXXXXXXXXXXXXXXL.XXXKX.
N),0,:9,:0.0.9,0.0,0.9.0.9.0,0,.0.0.0.41 0@
P.0,0.9.0,.0.0.0.0.0.0.0.0,.0.0.0,:::0.9.9.0.0.0.41
D,0,0.9.9,0,0,:0,.0.0.9,0.0,.0,.0.9.0.9.0,0,0,0,.0.0.0,0.¢

10,9,9,9,.0.9.9,9,0,0,.0.9.9,9,0,9,0.0.9.9,0:0,0,.0.9.0,0,0,.0. HEIN).9,0.0.9.0,.0,.0,0.0.0.0,0,.0,0, ;1 0, 0,000 &
10,9,9,:9,9.9.9,9,.9,:9.9.9.9,9.9.9,.0.9.9.0.0.0.0.0.0 (=0 0. QD . Q1D 09.0.0,.9,.9.0.0.0.0,0,.0.0 6,004,000 =
XXX XKKXKXXKXXKXXKXXTXXXKF XX XX XXX FEXXX XXX XXX XXX XXX XF?

OXXXXXAXXXXXTXXXFXXXHX
TXXXE XXXXXXXX} XXX
IXXXIXXXXY XX} {XX.

{XXF {XXF XX XX}
XX} 7XXm XX XX
XX TXXXF XX
XF XXXXL XX

XX} XXXF7XF XX}

MXXX’ XXX

FAYAVAVAVAN

The use of a camel image in association with Perl is a trademar

Associates, Inc. Used with permission.

XHXXXTXXXEXXXXXAXXXXX '

IXXX EXXXXXXXX TXXXF
XX} {XXF {XXXXFXXX}

(XX XXLTXX} 7XX}
XX XXL mXXF {XX
XX TXXXF XX
XX, IXXXX. 7X.
{XXL 7XF7XXX. {XX
XXX XXXm

FAYAVAVAVAN

k of O'Reilly &

Thecamel code that makes up the cover art was written by Stephen B. JendiasErudil). When
executed, it generates the images of four smaller camelsomgmsabove. A discussion of the camel
code in its native habitat can be found on PerIMonks
(http:/lwww.perlmonks.org/index.pl?node=camel+cotgre information about Stephen B.
Jenkins and his work can be found on his website (http://vsmudil.com).

Perl Training Australia (http://www.perltraining.com/x 87

88

Perl Training Australia (http://www.perltraining.com/x

